
Detecting Kernel-Level Rootkits
Through Binary Analysis

Christopher Kruegel
Technical University Vienna

chris@auto.tuwien.ac.at

William Robertson and Giovanni Vigna
Reliable Software Group

University of California, Santa Barbara
{wkr,vigna}@cs.ucsb.edu

Abstract

A rootkit is a collection of tools used by intruders to
keep the legitimate users and administrators of a compro-
mised machine unaware of their presence. Originally, root-
kits mainly included modified versions of system auditing
programs (e.g., ps or netstat on a Unix system). How-
ever, for operating systems that support loadable kernel
modules (e.g., Linux and Solaris), a new type of rootkit has
recently emerged. These rootkits are implemented as kernel
modules, and they do not require modification of user-space
binaries to conceal malicious activity. Instead, these rootkits
operate within the kernel, modifying critical data structures
such as the system call table or the list of currently-loaded
kernel modules.

This paper presents a technique that exploits binary anal-
ysis to ascertain, at load time, if a module’s behavior re-
sembles the behavior of a rootkit. Through this method, it
is possible to provide additional protection against this type
of malicious modification of the kernel. Our technique relies
on an abstract model of module behavior that is not affected
by small changes in the binary image of the module. There-
fore, the technique is resistant to attempts to conceal the ma-
licious nature of a kernel module.

1. Introduction

Most intrusions and computer security incidents follow a
common pattern where a remote user scans a target system
for vulnerable services, launches an attack to gain some type
of access to the system, and, eventually, escalates her privi-
leges. These privileges are then used to create backdoors that
will allow the attacker to return to the system at a later time.
In addition, actions are taken to hide the evidence that the
system has been compromised in order to prevent the sys-
tem administrator from noticing the security breach and im-
plementing countermeasures (e.g., reinstalling the system).

The tools used by an attacker after gaining administra-
tive privileges include tools to hide the presence of the at-
tacker (e.g., log editors), utilities to gather information about
the system and its environment (e.g., network sniffers), tools
to ensure that the attacker can regain access at a later time
(e.g., backdoored servers), and means of attacking other sys-
tems. Common tools have been bundled by the hacker com-
munity into “easy-to-use” kits, called rootkits [3].

Even though the idea of a rootkit is to provide all the
tools that may be needed after a system has been compro-
mised, rootkits focus in particular on backdoored programs
and tools to hide the attacker from the system administra-
tor. Originally, rootkits mainly included modified versions
of system auditing programs (e.g., ps or netstat for Unix
systems) [9]. These modified programs do not return any in-
formation to the administrator that involves specific files and
processes used by the intruder. Such tools, however, are eas-
ily detected using file integrity checkers such as Tripwire [7].

Recently, a new type of rootkit has emerged. These root-
kits are implemented as loadable kernel modules (LKMs). A
loadable kernel module is an extension to the operating sys-
tem (e.g., a device driver) that can be loaded into and un-
loaded from the kernel at runtime. Solaris and Linux are two
popular operating systems that support this type of runtime
kernel extension.

By implementing a rootkit as a kernel module, it is possi-
ble to modify critical kernel data structures (such as the sys-
tem call table, the list of active processes, or the list of kernel
modules) or intercept requests to the kernel regarding files
and processes that are created by an intruder [10, 14, 15].
Once the kernel is infected, it is very hard to determine
if a system has been compromised without the help of
hardware extensions such as the Trusted Platform Module
(TPM) [17, 12]. Therefore, it is important that mechanisms
are in place to detect kernel rootkits and prevent their inser-
tion into the kernel.

In this paper, we present a technique for the detection of
kernel-level rootkits in the Linux operating system. The tech-
nique is based on static analysis of loadable kernel module

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 30, 2008 at 17:55 from IEEE Xplore. Restrictions apply.

binaries. More precisely, the use of behavioral specifications
and symbolic execution allow one to determine if the mod-
ule being loaded includes evidence of malicious intent.

The contribution of this approach is twofold. First, by us-
ing static analysis, our technique is able to determine if a
kernel module is malicious before the kernel module is ac-
tually loaded into the kernel and executed. This is a major
advantage, because once the kernel image has been modi-
fied it may become infeasible to perform dynamic analysis
of the module’s actions in a reliable way. Second, the tech-
nique is applied to the binary image of a module and does not
require access to the module’s source code. Because of this,
the technique is widely applicable and it is possible to ana-
lyze the behavior of device drivers and other closed-source
kernel components that are distributed in binary form only.

The rest of the paper is structured as follows. Section 2
discusses related work on rootkits and rootkit detection. Sec-
tion 3 presents our approach to the detection of kernel-level
rootkits. Then, Section 4 provides an experimental evalua-
tion of the effectiveness and efficiency of our technique. Fi-
nally, Section 5 discusses possible limitations of the current
prototype, while Section 6 briefly concludes.

2. Related Work

Kernel-level rootkits have been circulating in the under-
ground hacker community for some time and in different
forms [6]. In general, there are different means that can be
used to modify kernel behavior.

The most common way of modifying the kernel is by in-
serting a loadable kernel module. The module has access
to the symbols exported by the kernel and can modify any
data structure or function pointer that is accessible. Typi-
cally, these kernel-level rootkits “hijack” entries in the sys-
tem call table and provide modified implementations of the
corresponding system call functions [10, 14]. These modi-
fied system calls often perform checks on the data passed
back to a user process and can thus efficiently hide informa-
tion about files and processes. An interesting variation is im-
plemented by the adore-ng rootkit [15, 16]. In this case,
the rootkit does not touch the system call table but hijacks the
routines used by the Virtual File System (VFS), and, there-
fore, it is able to intercept (and modify) calls that access files
in both the /proc file system and the root file system.

A related technique injects malicious code directly into
existing kernel modules instead of providing a complete
rootkit module. While this solution is in principle similar to
the insertion of a rootkit kernel module, it has the advan-
tage that the modification will survive a kernel reboot pro-
cedure if the modified module is automatically loaded in the
kernel standard configuration. On the other hand, this tech-
nique requires the modification of a binary that is stored on

the file system, and, therefore, it may be detected using in-
tegrity checkers.

Another way to modify the behavior of the kernel is to
access kernel memory directly from user space through the
/dev/kmem file. This technique (used, for example, by
SucKIT [13]) requires the identification of data structures
that need to be modified within the kernel image. However,
this is not impossible; in particular, well-known data struc-
tures such as the system call table are relatively easy to lo-
cate.

Kernel-level rootkits can be detected in a number of dif-
ferent ways. The most basic techniques include searching
for modified kernel modules on disk, searching for known
strings in existing binaries, or searching for configuration
files associated with specific rootkits. The problem is that
when a system has been compromised at the kernel level,
there is no guarantee that these detection tools will return re-
liable results. This is also true for signature-based rootkit de-
tection tools such as chkrootkit [11] that rely on oper-
ating system services to scan a machine for indications of
known rootkits.

To circumvent the problem of a possibly untrusted op-
erating system, rootkit scanners such as kstat [4],
rkscan [2], or St. Michael [8] follow a different ap-
proach. These tools are either implemented as kernel
modules with direct access to kernel memory, or they an-
alyze the contents of the kernel memory via /dev/kmem.
Both techniques allow the programs to monitor the in-
tegrity of important kernel data structures without the use of
system calls. For example, by comparing the system call ad-
dresses in the system call table with known good values
(taken from the /boot/System.map file), it is possi-
ble to identify hijacked system call entries.

This approach is less prone to being foiled by a kernel-
level rootkit because kernel memory is accessed directly.
Nevertheless, changes can only be detected after a rootkit
has been installed. In this case, the rootkit had the chance to
execute arbitrary code in the context of the kernel. Thus, it is
possible that actions have been performed to thwart or dis-
able rootkit scanners. Also, rootkits can carry out changes at
locations that are not monitored (e.g., task structures).

3. Rootkit Detection

The idea for our detection approach is based on the ob-
servation that the runtime behavior of regular kernel mod-
ules (e.g., device drivers) differs significantly from the be-
havior of kernel-level rootkits. We note that regular modules
have different goals than rootkits, and thus implement differ-
ent functionality.

The main contribution of this paper is that we show that it
is possible to distinguish between regular modules and root-
kits by statically analyzing kernel module binaries. The anal-

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 30, 2008 at 17:55 from IEEE Xplore. Restrictions apply.

ysis is performed in two steps. First, we have to specify unde-
sirable behavior. Second, each kernel module binary is stati-
cally analyzed for the presence of instructions sequences that
implement these specifications.

Currently, our specifications are given informally, and the
analysis step has to be adjusted appropriately to deal with
new specifications. Although it might be possible to intro-
duce a formal mechanism to model behavioral specifications,
it is not necessary for our detection prototype. The reason is
that a few general specifications are sufficient to accurately
capture the malicious behavior of all LKM-based rootkits.
Nevertheless, the analysis technique is powerful enough that
it can be easily extended. This may become necessary when
rootkit authors actively attempt to evade detection by chang-
ing the code such that it does not adhere to any of our speci-
fications.

3.1. Specification of Behavior

A specification of malicious behavior has to model a se-
quence of instructions that is characteristic for rootkits but
that does not appear in regular modules (at least, with a high
probability). That is, we have to analyze the behavior of root-
kits to derive appropriate specifications that can be used dur-
ing the analysis step.

In general, kernel modules (e.g., device drivers) initial-
ize their internal data structures during startup and then in-
teract with the kernel via function calls, using both system
calls or functions internal to the kernel. In particular, it is
not often necessary that a module directly writes to kernel
memory. Some exceptions include device drivers that read
from and write to memory areas that are associated with a
managed device and that are mapped into the kernel address
space to provide more efficient access or modules that over-
write function pointers to register themselves for event call-
backs.

Kernel-level rootkits, on the other hand, usually write di-
rectly to kernel memory to alter important system manage-
ment data structures. The purpose is to intercept the regular
control flow of the kernel when system services are requested
by a user process. This is done in order to monitor or change
the results that are returned by these services to the user pro-
cess. Because system calls are the most obvious entry point
for requesting kernel services, the earliest kernel-level root-
kits modified the system call table accordingly. For example,
one of the first actions of the knark [10] rootkit is to re-
place entries in the system call table with customized func-
tions to hide files and processes.

In newer kernel releases, the system call table is no longer
exported by the kernel, and thus it cannot be directly ac-
cessed by kernel modules. Therefore, alternative approaches
to influence the results of operating system services have
been proposed. One such solution is to monitor accesses to

the /proc file system. This is accomplished by changing
the function addresses in the /proc file system root node
that point to the corresponding read and write functions. Be-
cause the /proc file system is used by many auditing tools
to gather information about the system (e.g., about running
processes, or open network connections), a rootkit can eas-
ily hide important information by filtering the output that is
passed back to the user process. An example of this approach
is the adore-ng rootkit [16], which replaces functions of
the virtual file system (VFS) node of the /proc file sys-
tem.

As a general observation, we note that rootkits perform
writes to a number of locations in the kernel address space
that are usually not touched by regular modules. These writes
are necessary either to obtain control over system services
(e.g., by changing the system call table, file system functions,
or the list of active processes) or to hide the presence of the
kernel rootkit itself (e.g., modifying the list of installed mod-
ules). Because write operations to operating system manage-
ment structures are required to implement the needed func-
tionality, and because these writes are unique to kernel root-
kits, they present a salient opportunity to specify malicious
behavior.

To be more precise, we identify a loadable kernel mod-
ule as a rootkit based on the following two behavioral speci-
fications:

1. The module contains a data transfer instruction that per-
forms a write operation to an illegal memory area, or

2. the module contains an instruction sequence that i) uses
a forbidden kernel symbol reference to calculate an ad-
dress in the kernel’s address space and ii) performs a
write operation using this address.

Whenever the destination address of a data transfer can
be determined statically during the analysis step, it is possi-
ble to check whether this address is within a legitimate area.
The notion of legitimate areas is defined by a white-list that
specifies the kernel addressed that can be safely written to.
For our current system, these areas include function pointers
used as event call-back hooks (e.g., br ioctl hook()) or
exported arrays (e.g., blk dev).

One drawback of the first specification is the fact that the
destination address must be derivable during the static anal-
ysis process. Therefore, a complementary specification is in-
troduced that checks for writes to any memory address that
is calculated using a forbidden kernel symbol.

A kernel symbol refers to a kernel variable with its cor-
responding address that is exported by the kernel (e.g., via
/proc/ksysm). These symbols are needed by the module
loader, which loads and inserts modules into the kernel ad-
dress space. When a kernel module is loaded, all references
to external variables that are declared in this module but de-
fined in the kernel (or in other modules) have to be patched

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 30, 2008 at 17:55 from IEEE Xplore. Restrictions apply.

appropriately. This patching process is performed by substi-
tuting the place holder addresses of the declared variables
in the module with the actual addresses of the correspond-
ing symbols in the kernel.

The notion of forbidden kernel symbols can be based
on black-lists or white-lists. A black-list approach enumer-
ates all forbidden symbols that are likely to be misused by
rootkits, for example, the system call table, the root of the
/proc file system, the list of modules, or the task structure
list. A white-list, on the other hand, explicitly defines ac-
ceptable kernel symbols that can legitimately be accessed by
modules. As usual, a white-list approach is more restrictive,
but may lead to false positives when a module references a
legitimate but infrequently used kernel symbol that has not
been allowed previously. However, following the principle
of fail-safe defaults, a white-list also provides greater assur-
ance that the detection process cannot be circumvented.

Note that it is not necessarily malicious when a forbidden
kernel symbol is declared by a module. When such a symbol
is not used for a write access, it is not problematic. There-
fore, we cannot reject a module as a rootkit by checking the
declared symbols only.

Also, it is not sufficient to check for writes that target a
forbidden symbol directly. Often, kernel rootkits use such
symbols as a starting point for more complex address calcu-
lations. For example, to access an entry in the system call
table, the system call table symbol is used as a base ad-
dress that is increased by a fixed offset. Another example
is the module list pointer that is used to traverse a linked list
of module elements until the one that should be removed is
reached. Therefore, a more extensive analysis has to be per-
formed to also track indirect uses of forbidden kernel sym-
bols for write accesses.

A clever intruder could use an attack in which two mod-
ules cooperate to evade detection. In this attack, a first mod-
ule only reads the sensitive address (e.g., the address of the
system call table) and then it exports a function to access
the address. A second module then reads the sensitive ad-
dress indirectly from the first module and uses it for an ille-
gal write access. To thwart this evasion, all symbols and re-
turn values of functions declared by other kernel modules are
also marked as forbidden. Thus, when the second module ac-
cesses the function exported by the first module, the return
value is tagged as forbidden and also subsequent write oper-
ations based on this value would result in an alarm.

Naturally, there is an arms-race between rootkits that use
more sophisticated methods to obtain kernel addresses and
our detection system that relies on specifications of mali-
cious behavior. For current rootkits, our basic specifications
allow for reliable detection with no false positives (see Sec-
tion 4 for details). However, it might be possible to circum-
vent these specifications. In that case, it is necessary to pro-
vide more elaborate descriptions of malicious behavior.

Note that our behavioral specifications have the advantage
that they provide a general model of undesirable behavior.
That is, these specifications characterize an entire class of
malicious actions. This is different from fine-grained spec-
ifications that need to be tailored to individual kernel mod-
ules. In addition, behavioral specifications have the poten-
tial to detect previously unknown rootkits. In contrast to ap-
proaches that rely on anti-virus-like pattern matching tech-
niques, our tool can detect any kernel-level rootkit that satis-
fies our assumptions.

3.2. Symbolic Execution

Based on the specifications introduced in the previous
section, the task of the analysis step is to statically check the
module binary for instructions that correspond to these spec-
ifications. When such instructions are found, the module is
labeled as a rootkit.

We perform analysis on binaries using symbolic execu-
tion. Symbolic execution is a static analysis technique in
which program execution is simulated using symbols, such
as variable names, rather than actual values for input data.
The program state and outputs are then expressed as math-
ematical (or logical) expressions involving these symbols.
When performing symbolic execution, the program is basi-
cally executed with all possible input values simultaneously,
thus allowing one to make statements about the program be-
havior.

One problem with symbolic execution is the fact that it
is impossible to make statements about arbitrary programs
in general, due to the halting problem. However, when the
completeness requirement is relaxed, it is often possible to
obtain useful results in practice. Relaxing the completeness
requirement implies that the analysis is not guaranteed to de-
tect malicious instructions sequences in all cases. However,
this can be tolerated when most relevant instances are found.

In order to simulate the execution of a program, or, in our
case, the execution of a loadable kernel module, it is neces-
sary to perform two preprocessing steps.

First, the code sections of the binary have to be disas-
sembled. In this step, the machine instructions have to be
extracted and converted into a format that is suitable for
symbolic execution. That is, it is not sufficient to simply
print out the syntax of instructions, as done by programs
such as objdump. Instead, the type of the operation and
its operands have to be parsed into an internal representa-
tion. The disassembly step is complicated by the complexity
of the Intel x86 instruction set, which uses a large number
of variable length instructions and many different address-
ing modes for backwards compatibility reasons.

In the second preprocessing step, it is necessary to ad-
just address operands in all code sections present. The rea-
son is that a Linux loadable kernel module is merely a stan-

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 30, 2008 at 17:55 from IEEE Xplore. Restrictions apply.

dard ELF relocatable object file. Therefore, many memory
address operands have not been assigned their final values
yet. These memory address operands include targets of jump
and call instructions but also source and destination locations
of load, store, and move instructions.

For a regular relocatable object file, the addresses are ad-
justed by the linker. To enable the necessary link operations,
a relocatable object also contains, besides regular code and
data sections, a set of relocation entries. Note, however, that
kernel modules are not linked to the kernel code by a regular
linker. Instead, the necessary adjustment (i.e., patching) of
addresses is performed during module load time by a special
module loader. For Linux kernels up to version 2.4, most of
the module loader ran in user space; for kernels from version
2.5 and up, much of this functionality was moved into the
kernel. To be able to simulate execution, we perform a pro-
cess similar to linking and substitute place holders in instruc-
tion operands and data locations with the real addresses. This
has the convenient side-effect that we can mark operands that
represent forbidden kernel symbols so that the symbolic ex-
ecution step can later trace their use in write operations.

When the loadable kernel module has been disassembled
and the necessary address modifications have occurred, the
symbolic execution process can commence. To this end, an
initial machine state is created and execution starts with the
module’s initialization routine, called init module().

Handling Machine State The machine state represents a
snapshot of the system during symbolic execution. That is,
the machine state contains all possible values that could be
present in the processor registers and the memory address
space of the running process at a certain point during the ex-
ecution process. Given the notion of a machine state, an in-
struction can then be defined as a function that maps one ma-
chine state into another one. This mapping will reflect the ef-
fect of the instruction itself (e.g., a data value is moved from
one register to another), but also implicit effects such as in-
crementing the instruction pointer.

When complete knowledge about the processor and mem-
ory state is available, and given the absence of any input and
external modifications of the machine state, it would be pos-
sible to deterministically simulate the execution of a mod-
ule. However, in our case, the complexity of such a com-
plete simulation would be tremendous. Therefore, we intro-
duce a number of simplifications that improve the efficiency
of the symbolic execution process, while retaining the abil-
ity to detect most malicious instruction sequences.

A main simplification is the fact that we consider the ini-
tial configuration of the memory content as unknown. This
means that whenever a value is taken from memory, a spe-
cial unknown token is returned. However, it does not imply
that all loads from memory are automatically transformed
into unknown tokens. When known values are stored at cer-
tain memory locations, these values are remembered and can

subsequently be loaded. This is particularly common for the
stack area when return addresses are pushed on the stack by
a call operation and later loaded by the corresponding return
instruction.

During symbolic execution, we can simulate the effect of
arithmetic, logic, and data transfer instructions. To this end,
the values of the operands are calculated and the required op-
eration is performed. When at least one of the operands is an
unknown token, the result is also unknown.

Another feature is a tainting mechanism that tags val-
ues that are related to the use of forbidden kernel symbols.
Whenever a forbidden symbol is used as an operand, even
when its value is unknown, the result of the operation is
marked as tainted. Whenever a tainted value is later used by
another instruction, its result becomes tainted as well. This
allows us to detect writes to kernel memory that are based on
the use of forbidden symbols.

For the initial machine state, we prepare the processor
state such that the instruction pointer register is pointing
to the first instruction of the module’s initialization routine,
while the stack pointer and the base (i.e., frame) pointer reg-
ister refer to valid addresses on the kernel stack. All other
registers and the entire memory is marked as unknown.

Then, instructions are sequentially processed and the ma-
chine state is updated accordingly. For each data transfer, it
is checked whether data is written to kernel memory areas
that are not explicitly permitted by the white-list, or whether
data is written to addresses that are tainted because of the use
of forbidden symbols.

The execution of instructions continues until execution
terminates with the final return instruction of the initializa-
tion function, or until a control flow instruction is reached.

Handling Control Flow Control flow instructions present
problems for our analysis when they have two possible suc-
cessor instructions (i.e., continuations). In this case, the sym-
bolic execution process must either select a continuation to
continue at, or a mechanism must be introduced to save the
current machine state at the control flow instruction and ex-
plore both paths one after the other. In this case, the execu-
tion first continues with one path until it terminates and then
backs up to the saved machine state and continues with the
other alternative.

The only problematic type of control flow instructions are
conditional branches. This is because it is not always possi-
ble to determine the real target of such a branch operation
statically. The most common reason is that the branch con-
dition is based on an unknown value, and thus, both continu-
ations are possible. Neither unconditional jumps nor call in-
structions are a difficulty because both only have a single tar-
get instruction where the execution continues. Also, calls and
the corresponding return operations are not problematic be-
cause they are handled correctly by the stack, which is part
of the machine state.

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 30, 2008 at 17:55 from IEEE Xplore. Restrictions apply.

Because malicious writes can occur on either path after
a conditional branch, we chose to save the machine state
at these instructions and then consecutively explore both al-
ternative continuations. Unfortunately, this has a number of
problems that have to be addressed.

branch (x) if (x) then

 block A;

else

 block B;

branch (y)

block E

if (y) then

 block C;

else

 block D;

block A block B

block C block D

1:

2: 3:

4:

5: 6:

7:

Figure 1. Example control flow graph.

One problem is caused by the exponential explosion of
possible paths that need to be followed. Consider the case of
multiple branch instructions that are the result of a series of
if-else constructs in the corresponding source code (see Fig-
ure 1). After each if-else block, the control flow joins. In this
example, the machine state needs to be saved at node 1, at
the branch(x) instruction. Then, the first path is taken via
node 2. The machine state is saved a second time at node 4
and both the left and the right path are subsequently exe-
cuted (using the state previously saved at node 4). Then, the
execution process is rewinded to the first check point, and
continues via the right path (i.e., via node 3). Again, the ma-
chine state needs to be saved at node 4, and both alterna-
tives are followed a second time. Thus a total of four paths
have to be explored as a result of only two branch instruc-
tions.

Also, it is possible that impossible paths are being fol-
lowed. If, in our example, both the branch(x) and the
branch(y) instructions evaluated to the same boolean
value, it would be impossible that execution flows through
nodes 2 and 6, or through nodes 3 and 5. For our prototype,
the path explosion problem and impossible paths have not
caused any difficulties (refer to Section 4 for the evaluation
of our system). This is due to the limited size of the kernel
modules. Therefore, we save the machine state at every con-
ditional branch instruction and explore both alternative con-
tinuations.

Another problem is the presence of loops. Because the
machine state is saved at every branch instruction and both
alternatives are explored one after another, the existence of a

loop would prevent the execution process from terminating.
The reason is that both continuations of the branch that cor-
responds to the loop termination condition are explored (i.e.,
the loop body and the code path after the loop). When the
path that follows the loop body eventually reaches the loop
termination condition again, the state is saved a second time.
Then, as usual, both alternative continuations are explored.
One of these continuations is, of course, the loop body that
leads back to the loop termination condition, where the pro-
cess repeats.

To force termination of our symbolic execution process,
it is necessary to remove control flow loops. Note that it is
not sufficient to simply mark nodes in the control flow that
have been previously processed. The reason is that nodes can
be legitimately processed multiple times without the exis-
tence of loops. In the example shown in Figure 1, the sym-
bolic execution processes node 4 twice because of the join-
ing control flows from node 2 and node 3. However, no loop
is present, and the analysis should not terminate prematurely
when reaching node 4 for the second time.

Back-Edge

Figure 2. Control flow graph with loop.

Instead, a more sophisticated algorithm based on the con-
trol flow graph of the binary is necessary. In [1], a suitable
algorithm is presented that is based on dominator trees. This
algorithm operates on the control flow graph and can detect
(and remove) the back-edges of loops. Simply speaking, a
back-edge is the jump from the end of the loop body back to
the loop header, and it is usually the edge that would be iden-
tified as the “loop-defining-edge” by a human looking at the
control flow graph. For example, Figure 2 shows a control
flow graph with a loop and the corresponding back-edge.

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 30, 2008 at 17:55 from IEEE Xplore. Restrictions apply.

For our system, we first create a control flow graph of the
kernel module code after it has been preprocessed. Then, a
loop detection algorithm is run and the back-edges are de-
tected. Each conditional branch instruction that has a back-
edge as a possible continuation is tagged appropriately. Dur-
ing symbolic execution, no machine state is saved at these
instructions and processing continues only at the non-back-
edge alternative. This basically means that a loop is executed
at most once by our system. For future work, we intend to re-
place this simple approach by more advanced algorithms for
symbolic execution of loops. Note, however, that more so-
phisticated algorithms that attempt to execute a loop multi-
ple times will eventually hit the limits defined by the halting
problem. Thus, every approach has to accept a certain de-
gree of incompleteness that could lead to incorrect results.

A last problem are indirect jumps that are based on un-
known values. In such cases, it might be possible to heuristi-
cally choose possible targets and speculatively continue with
the execution process there. In our current prototype, how-
ever, we simply terminate control flow at these points. The
reason is that indirect jumps based on unknown values al-
most never occurred in our experiments.

4. Evaluation

The proposed rootkit detection algorithm was imple-
mented as a user space prototype that simulated the object
parsing and symbol resolution performed by the exist-
ing kernel module loader before disassembling the mod-
ule and analyzing the code for the presence of malicious
writes to kernel memory. The prototype implementa-
tion was evaluated with respect to its detection capabil-
ities and performance impact on production systems. To
this end, an experiment was devised in which the proto-
type was run on several sets of kernel modules. Detection
capability for each set was evaluated in terms of false pos-
itive rates for legitimate modules, and false negative rates
for rootkit modules. Detection performance was evalu-
ated in terms of the total execution time of the prototype
for each module analyzed. The evaluation itself was con-
ducted on a testbed consisting of a single default Fedora
Core 1 Linux installation on a Pentium IV 2.0 GHz work-
station with 1 GB of RAM.

4.1. Detection Results

For the detection evaluation, three sets of kernel mod-
ules were created. The first set comprised the knark and
adore-ng rootkits, both of which were used during de-
velopment of the prototype. As mentioned previously, both
rootkits implement different methods of subverting the con-
trol flow of the kernel: knark overwrites entries in the sys-
tem call table to redirect various system calls to its own han-

dlers, while adore-ng patches itself into the VFS layer of
the kernel to intercept accesses to the /proc file system.
Since each rootkit was extensively analyzed during the pro-
totype development phase, it was expected that all malicious
kernel accesses would be discovered.

The second set consisted of a set of seven additional pop-
ular rootkits downloaded from the Internet, described in Ta-
ble 1. Since these rootkits were not analyzed during the pro-
totype development phase, the detection rate for this group
can be considered a measure of the generality of the detec-
tion technique as applied against previously unknown root-
kits that utilize similar means to subvert the kernel as knark
and adore-ng.

The final set consisted of a control group of legitimate
kernel modules, namely the entire default set of kernel mod-
ules for the Fedora Core 1 Linux x86 distribution. This
set includes 985 modules implementing various components
of the Linux kernel, including networking protocols (e.g.,
IPv6), bus protocols (e.g., USB), file systems (e.g., EXT3),
and device drivers (e.g., network interfaces, video cards). It
was assumed that no modules incorporating rootkit function-
ality were present in this set.

Table 2 presents the results of the detection evaluation for
each of the three sets of modules. As expected, all malicious
writes to kernel memory by both knark and adore-ng
were detected, resulting in a false negative rate of 0% for
both rootkits. All malicious writes by each evaluation root-
kit were detected as well, resulting in a false negative rate of
0% for this set. We interpret this result as an indication that
the detection technique generalizes well to previously un-
seen rootkits. Finally, no malicious writes were reported by
the prototype for the control group, resulting in a false pos-
itive rate of 0%. We thus conclude that the detection algo-
rithm is completely successful in distinguishing rootkits ex-
hibiting specified malicious behavior from legitimate kernel
modules, as no misclassifications occurred during the entire
detection evaluation.

scan: initializing scan for rootkits/all-root.o
scan: loading kernel symbol table from boot/System.map
scan: kernel memory configured [c0100000-c041eaf8]
scan: resolving external symbols in section .text
scan: disassembling section .text
scan: performing scan from [.text+40]
scan: WRITE TO KERNEL MEMORY [c0347df0] at [.text+50]
scan: 1 malicious write detected, denying module load

Figure 3. all-root rootkit analysis.

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 30, 2008 at 17:55 from IEEE Xplore. Restrictions apply.

Rootkit Technique Description

adore syscalls File, directory, process, and socket hiding
Rootshell backdoor

all-root syscalls Gives all processes UID 0
kbdv3 syscalls Gives special user UID 0

kkeylogger syscalls Logs keystrokes from local and network logins
rkit syscalls Gives special user UID 0

shtroj2 syscalls Execute arbitrary programs as UID 0
synapsys syscalls File, directory, process, socket, and module hiding

Gives special user UID 0

Table 1. Evaluation rootkits.

Module Set Modules Analyzed Detections Misclassification Rate

Development rootkits 2 2 0 (0%)
Evaluation rootkits 6 6 0 (0%)

Fedora Core 1 modules 985 0 0 (0%)

Table 2. Detection results.

To verify that the detection algorithm performed correctly
on the evaluation rootkits, traces of the analysis performed
by the prototype on each rootkit were examined with re-
spect to the corresponding module code. As a simple exam-
ple, consider the case of the all-root rootkit, the analy-
sis trace of which is shown in Figure 3. From the trace, we
can see that one malicious kernel memory write was detected
at .text+50 (i.e., at an offset of 50 bytes into the .text
section). By examining the disassembly of the all-root
module, the relevant portion of which is shown in Fig-
ure 4, we can see that the overwrite occurs in the module’s
initialization function, init module()1. Specifically, the
movl instruction at .text+50 is flagged as a malicious
write to kernel memory. Correlating the disassembly with
the corresponding rootkit source code, shown in Figure 5,
we can see that this instruction corresponds to the write to
the sys call table array to replace the getuid() sys-
tem call handler with the module’s malicious version at line
4. Thus, we conclude that the rootkit’s attempt to redirect a
system call was properly detected.

4.2. Performance Results

For the performance evaluation, the elapsed execution
time of the analysis phase of the prototype was recorded
for all modules, legitimate and malicious. Time spent pars-
ing the object file and patching relocation table entries into

1 Note that this disassembly was generated prior to kernel symbol resolu-
tion, thus the displayed read and write accesses are performed on place
holder addresses. At runtime and for the symbolic execution, the proper
memory address would be patched into the code.

00000040 <init_module>:
40: a1 60 00 00 00 mov 0x60,%eax
45: 55 push %ebp
46: 89 e5 mov %esp,%ebp
48: a3 00 00 00 00 mov %eax,0x0
4d: 5d pop %ebp
4e: 31 c0 xor %eax,%eax
50: c7 05 60 00 00 00 00 movl $0x0,0x60
57: 00 00 00
5a: c3 ret

Figure 4. all-root module disassembly.

1 int init_module(void)
2 {
3 orig_getuid =

sys_call_table[__NR_getuid];
4 sys_call_table[__NR_getuid] =

give_root;
5
6 return 0;
7 }

Figure 5. all-root initialization function.

the module was excluded, as these functions are already per-
formed as part of the normal operation of the existing mod-
ule loader. The goal of the evaluation was to provide some
indication about the performance overhead introduced by the
detection process in the loading of a module in a production
kernel. Note that as mentioned previously, no runtime over-

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 30, 2008 at 17:55 from IEEE Xplore. Restrictions apply.

head is generated by our technique after the module has been
loaded.

 1

 10

 100

 1000

 0 100 200 300 400 500

N
um

be
r

of
 M

od
ul

es

Execution Time (ms)

Detection Overhead

Figure 6. Detection overhead on module load.

Figure 6 shows the elapsed execution time of all evalu-
ated modules, discretized into log-scale buckets with a width
of 10 ms. As we can see, the vast majority of modules would
experience a delay of 10 ms or less during module load. Sev-
eral modules with more complex initialization procedures
(and thus complex control flow graphs) required more time
to fully analyze, but as can be seen in Table 3, the detection
algorithm never spent more than 420 ms to classify a mod-
ule as malicious or legitimate. Thus, we conclude that the
impact of the detection algorithm on the module load opera-
tion is acceptable for a production system.

Minimum Maximum Median Std. Deviation

0.00 ms 420.00 ms 0.00 ms 39.83

Table 3. Detection overhead statistics.

5. Discussion

Our prototype is a user-space program that statically an-
alyzes Linux loadable kernel modules for the presence of
rootkit functionality. These modules have to be ELF object
files that are compiled for the Intel x86 architecture.

The limitation on the classes of modules that can be an-
alyzed stems from the fact that a kernel module needs to be
parsed and its code sections disassembled before the actual
analysis can start. Therefore, additional parsing and disas-
sembly routines would be necessary to process different ob-
ject file formats or instruction sets. Because a vast majority
of Linux systems run on Intel x86 machines, and because
Linux kernel modules have to be provided as ELF object
files, we developed our prototype for this combination. The
analysis technique itself, however, can be readily extended
to other systems.

Our tool is currently available as a user program only. In
order to provide automatic protection from rootkits, it would
be necessary to integrate our analyzer into the kernel’s mod-
ule loading infrastructure. As an additional requirement, the
analyzer must not be bypassable when a process with root
permissions attempts to load a module. The reason is that
kernel modules can only be inserted by the root user. Thus,
the threat model has to assume that the attacker has supe-
ruser privileges when attempting to load a kernel module.

Up until Linux 2.4, most work of the module loading pro-
cess was done in user space, using the insmod program. In
this case, adding our checker to insmod would not be use-
ful because an attacker can simply supply a customized ver-
sion without checks. The solution is to move the analyzer
code into kernel space. Interestingly, starting from Linux 2.5,
most of the module loading code has been moved into the
kernel space, providing an optimal place to add our checks.

Unfortunately, mechanisms have been proposed to inject
code directly into the kernel without using the module load-
ing interface. These ideas originated from the fact that some
system administrators disabled the module loading function-
ality as a defense against kernel-level rootkits. These mech-
anisms operate by writing the code directly into kernel space
via the /dev/kmem device, completely bypassing the mod-
ule loading code.

In our opinion, a sensible and secure solution would disal-
low modifications of kernel memory via /dev/kmem, a fea-
ture that is already offered by Linux security solutions such
as grsecurity [5]. In addition, our kernel-level rootkit analy-
sis system would operate in kernel context behind the mod-
ule loading interface, thus having the opportunity to stati-
cally scan each module before it gets to run as part of the
kernel.

A possible way for rootkits to evade the behavioral spec-
ification that is based on forbidden kernel symbols (see Sec-
tion 3 for details) is to stop using these symbols. However, to
perform the necessary modifications of the kernel data struc-
tures or function pointers, their addresses are needed. There-
fore, alternative approaches to resolving these addresses are
required. One option is to use a brute force guessing tech-
nique that works by scanning the kernel memory for the oc-
currence of “known content” that is stored at the target loca-
tion. This is particularly effective for the system call table.
The reason is that its content is known because system call
table entries are pointers to handler functions whose sym-
bols are exported.

Although a brute force guessing approach might not al-
ways be suitable, we propose the addition of a specifica-
tion that considers the scanning of kernel memory as an-
other indication of the presence of a rootkit. This specifi-
cation checks for loops that, starting from any kernel sym-
bol, sequentially read data and compare this data to constant
values. Also, note that the specification that checks for il-

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 30, 2008 at 17:55 from IEEE Xplore. Restrictions apply.

legitimate memory accesses based on actual destination ad-
dresses works independently of kernel symbols referenced
by the module.

6. Conclusions

Rootkits are powerful attack tools that are used by in-
truders to hide their presence from system administrators.
Kernel-level rootkits, in particular, directly modify the ker-
nel, and, therefore, can intercept and prevent any attempt of
an administrator to determine if the security of the system
has been violated. Because of this, it is important to devise
mechanisms that can protect the integrity of the kernel even
in the aftermath of the compromise of the administrator ac-
count.

This paper presents a technique that is based on static
analysis to identify instruction sequences that are an indi-
cation of rootkits. Informal behavioral specifications define
such characteristic instruction sequences as data transfer op-
erations that write to certain illegitimate kernel memory ar-
eas. Symbolic execution is then used to simulate the execu-
tion of the kernel module to detect instructions that fulfill
these specifications. Through this method, it is possible to
detect malicious behavior before a module is loaded into the
kernel, and, in addition, it is possible to operate on closed-
source components, such as proprietary drivers.

We implemented our technique in a prototype tool and we
evaluated both the effectiveness and the performance of the
tool with respect to nine real-world rootkits as well as the
complete set of 985 legitimate kernel modules that are in-
cluded with the Fedora Core 1 Linux distribution. The re-
sults show that all tested rootkits were successfully identi-
fied, and no false positives were raised on legitimate mod-
ules. We thus conclude that the technique can reliably de-
tect malicious kernel modules and, therefore, it represents a
useful tool to harden the operating system kernel. In addi-
tion, we show that detection can be done efficiently, despite
the application of a potentially expensive static analysis tech-
nique.

Future work will be centered on devising a more formal
description of the aspects that characterize rootkit-like be-
havior. In addition, we plan to study how attacks that attempt
to bypass our detection procedures can be prevented. Finally,
we intend to integrate the detection component into the ker-
nel module loader infrastructure as a step towards preparing
the system for general usage.

Acknowledgments

This research was supported by the Army Research Of-
fice, under agreement DAAD19-01-1-0484 and by the Na-
tional Science Foundation under grants CCR-0209065 and
CCR-0238492.

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers – Principles,
Techniques, and Tools. World Student Series of Computer
Science. Addison Wesley, 1986.

[2] S. Aubert. rkscan: Rootkit Scanner. http:
//www.hsc.fr/ressources/outils/rkscan/
index.html.en, 2004.

[3] Black Tie Affair. Hiding Out Under UNIX. Phrack Maga-
zine, 3(25), 1989.

[4] FuSyS. Kstat v. 1.1-2. http://s0ftpj.org/, November 2002.
[5] grsecurity. An innovative approach to security utilizing a

multi-layered detection, prevention, and containment model.
http://www.grsecurity.net/, 2004.

[6] Halflife. Abuse of the Linux Kernel for Fun and Profit. Phrack
Magazine, 7(50), April 1997.

[7] G. Kim and E. Spafford. The Design and Implementation of
Tripwire: A File System Integrity Checker. Technical report,
Purdue University, Nov. 1993.

[8] T. Lawless. St. Michael and St. Jude. http://
sourceforge.net/projects/stjude/, 2004.

[9] T. Miller. T0rn rootkit analysis. http://www.ossec.
net/rootkits/studies/t0rn.txt.

[10] T. Miller. Analysis of the KNARK Rootkit. http://www.
ossec.net/rootkits/studies/knark.txt, 2004.

[11] N. Murilo and K. Steding-Jessen. Chkrootkit v. 0.43. http:
//www.chkrootkit.org/.

[12] D. Safford. The Need for TCPA. IBM White Paper, October
2002.

[13] sd and devik. Linux on-the-fly kernel patching without LKM.
Phrack Magazine, 11(58), 2001.

[14] Stealth. adore. http://spider.scorpions.net/
˜stealth, 2001.

[15] Stealth. Kernel Rootkit Experiences and the Future. Phrack
Magazine, 11(61), August 2003.

[16] Stealth. adore-ng. http://stealth.7350.org/
rootkits/, 2004.

[17] TCG. Trusted Computing Group Home. https://www.
trustedcomputinggroup.org/home, 2004.

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 30, 2008 at 17:55 from IEEE Xplore. Restrictions apply.

