
Improving Signature Testing Through Dynamic Data Flow Analysis

Christopher Kruegel
Technical University Vienna

chris@auto.tuwien.ac.at

Davide Balzarotti, William Robertson, Giovanni Vigna
University of California, Santa Barbara

balzarot,wkr,vigna@cs.ucsb.edu

Abstract

The effectiveness and precision of network-based intru-
sion detection signatures can be evaluated either by di-
rect analysis of the signatures (if they are available) or
by using black-box testing (if the system is closed-source).
Recently, several techniques have been proposed to gen-
erate test cases by automatically deriving variations (or
mutations) of attacks. Even though these techniques have
been useful in identifying “blind spots” in the signatures of
closed-source, network-based intrusion detection systems,
the generation of test cases is performed in a random, un-
guided fashion. The reason is that there is no information
available about the signatures to be tested. As a result,
identifying a test case that is able to evade detection is dif-
ficult.

In this paper, we propose a novel approach to drive the
generation of test cases by using the information gathered
by analyzing the dynamic behavior of the intrusion detec-
tion system. Our approach applies dynamic data flow anal-
ysis techniques to the intrusion detection system to identify
which parts of a network stream are used to detect an at-
tack and how these parts are matched by a signature. The
result of our analysis is a set of constraints that is used to
guide the black-box testing process, so that the mutations
are applied to only those parts of the attack that are rele-
vant for detection. By doing this, we are able to perform
a more focused generation of the test cases and improve
the process of identifying an attack variation that evades
detection.

1. Introduction

Intrusion detection systems (IDSs) can be broadly di-
vided into two classes: those that rely on models of nor-
mal behavior and detect deviations from these models (i.e.,
anomaly-based systems), and those that contain descrip-
tions of malicious behavior and detect events (or sequences
of events) that match these descriptions (i.e., signature-
based systems). While both classes of intrusion detection

systems have complementary strengths, they are both vul-
nerable to evasion attacks.

In the case of anomaly-based systems, evasion tech-
niques are used to craft an exploit so that it resembles nor-
mal behavior. The application of these techniques is usu-
ally called a mimicry attack [30]. In the case of signature-
based systems, evasion techniques are used to modify an
exploit so that it does not match any of the signatures used
by the intrusion detection system, while retaining the abil-
ity to compromise the security of the target system [20].

Recently, a number of approaches [4, 13, 16, 18, 22, 23,
29] have been proposed to test the effectiveness and preci-
sion of network-based intrusion detection systems. In par-
ticular, approaches based on the generation of test cases by
automatically deriving variations (or mutations) of known
exploits have been shown to be able to identify problems
in the detection mechanisms used by both open-source
and commercial, state-of-the-art systems [13, 29]. These
approaches leverage a number of transformations, called
“mutant operators”, that are applied to an exploit template.
The goal of applying these mutation operators is to obtain
a modified version that has a different network manifesta-
tion with respect to the original attack, but it is still able to
compromise a vulnerable target.

Mutant operators can work at different levels of abstrac-
tion (e.g., at the network level or at the application level),
and they can be composed and/or applied multiple times.
For example, consider a first mutant operator that adds
effect-free commands to an FTP session (e.g., adds a “CWD
.” or a “NOOP” command) and a second one that applies
fragmentation to the IP traffic. The first operator can be ap-
plied multiple times to an FTP-based exploit template with-
out invalidating the attack (unless, of course, the length of
the session affects the success of the exploit), while the sec-
ond one can be applied in different ways (e.g., by specify-
ing different fragment sizes). Thus, the number of possible
variations of the original exploit that can be used as test
cases quickly grows very large.

In current approaches, the generation of test cases is ei-
ther manually guided or a random process. In the former
case, a human expert selects which operators to apply to
the exploit template and which parameters to use for each

23rd Annual Computer Security Applications Conference

1063-9527/07 $25.00 © 2007 IEEE
DOI 10.1109/ACSAC.2007.40

53

23rd Annual Computer Security Applications Conference

1063-9527/07 $25.00 © 2007 IEEE
DOI 10.1109/ACSAC.2007.40

53

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 30, 2008 at 17:41 from IEEE Xplore. Restrictions apply.

operator. The results obtained by running the selected test
cases might provide hints on how to select the operators
and their parameters in the next round of tests. In the lat-
ter case, the operators (and the values of their parameters)
are selected randomly. Both these approaches are less than
optimal because they either require extensive expert knowl-
edge or represent “shots in the dark.” Therefore, there is the
need for a new technique for testing network-based signa-
tures that is both automated and more focused than a purely
random approach. In theory, some guidance about how to
generate the relevant test cases can be derived from the sig-
natures themselves. For example, by looking at which fea-
tures of the network traffic are analyzed by a signature, it is
possible to focus the test case generation by using only the
mutant operators that affect those features. Unfortunately,
most intrusion detection system vendors do not make their
signatures available because they consider them to be their
intellectual property and an advantage with respect to their
competitors. Thus, in general, one cannot rely on the avail-
ability of the signatures to guide the generation of the test
cases.

To address this problem, we propose a novel approach
to drive the generation of test cases based on the analysis
of the dynamic behavior of a network-based intrusion de-
tection system. As a first step, we apply dynamic data flow
analysis techniques to the NIDS binary to determine which
parts of the attack trace are checked by the NIDS. We then
leverage this information to restrict the test case generation
process to only use the mutant operators that modify the
relevant parts of the attack.

Based on the knowledge of which parts of a network
trace are considered by the detection process, we further
refine our analysis to also take into account how these parts
are used. For simple checks (e.g., the comparison of a
source port number with an integer constant), the constant
value specified by the signature is extracted from the dy-
namic trace. Most of the signatures also specify strings or
regular expression to be matched against the packet pay-
load. To address these cases, we developed a technique
that aims at reconstructing a finite state machine that cap-
tures the behavior of the pattern matching process. That
is, the state machine derived from the analysis should ac-
cept an input string if and only if this string matches a
pattern specified by the signature. While it might not al-
ways be possible to precisely reconstruct this state machine
(particularly in the case of regular expressions), patterns
can be reconstructed by observing the execution of popu-
lar string matching algorithms such as Boyer-Moore [5] or
Aho-Corasick [1].
The contributions of this paper are the following:

• We present a novel, practical technique to effectively
drive the generation of test cases for the evaluation of
network-based signatures. Our technique analyzes the
dynamic behavior of a NIDS program to determine

which parts of an attack are used by the detection pro-
cess.

• In addition to locating the parts of the attack traffic that
are used in the detection process, we also determine
the nature of the checks that the NIDS performs. In
particular, our analysis can automatically extract both
specific numerical values and strings that the NIDS is
searching for.

• We have developed a prototype tool to evaluate our
technique on both open-source and closed-source
commercial NIDSs. The results demonstrate that our
approach allows for effective generation of exploit
mutants that are able to avoid detection, even when
no signature information is available.

The remainder of the paper is structured as follows. Sec-
tion 2 presents the dynamic analysis technique utilized to
analyze the behavior of the IDS being tested. Section 3
introduces our mechanisms to extract signature constraints
from the observed behavior. Section 4 explains how the
analysis results can be used to generate the test cases for a
network-based signature. Section 5 evaluates the effective-
ness of our approach. Section 6 discusses related work.
Finally, Section 7 draws conclusions and outlines future
work.

2. Dynamic Data Flow Analysis

The goal of our dynamic data flow analysis is to deter-
mine which parts of a network stream are used by the in-
trusion detection system to identify the presence of an at-
tack. More precisely, we are interested in the positions of
all values, or bytes, that are analyzed by the IDS during the
detection process.

To determine the input bytes that affect detection, we
dynamically monitor the intrusion detection sensor while it
is processing the network data. In particular, we tag each
input byte that is introduced into the address space of the
IDS process with a unique label. This label establishes a
relationship between a particular input byte and a location
in memory. Then, we keep track of each labeled value as
the sensor’s execution progresses. To this end, the output of
every instruction that uses a labeled value as input is tagged
with the same label as well. For example, consider the case
of a data transfer operation that loads a value with the label
“123” from memory into a register. After the instruction is
executed, the contents of the target register is also labeled
with “123”. Clearly, it is possible that the result of an op-
eration depends on more than one input byte. For example,
consider an operation that adds together two values, each
of which is tagged with a different label. In this case, the
result is tagged with a set that holds both labels (called a
label set).

5454

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 30, 2008 at 17:41 from IEEE Xplore. Restrictions apply.

Machine instructions typically read one or more data
values from registers or memory locations that are spec-
ified by their source operands. These values are then pro-
cessed and a result is written to the location specified by the
destination operand. For example, move operations (e.g.,
mov), arithmetic instructions (e.g., add), logic operations
(e.g., and), and stack manipulation operations (e.g., push,
pop) all belong to this class. For these instructions, the la-
bel set that is assigned to the result of the operation is the
union of the label sets of all the operation’s operands. Prop-
agating label information by tracking the use of input bytes
as source (and destination) operands results in an analy-
sis that is very similar to the propagation of taint values
in Perl or as implemented by TaintCheck [19] and related
approaches [6, 7, 8]. That is, for every instruction that is
executed, we can determine whether there exists a direct
dependency of the value of one or more of its operands on
certain input bytes.

In addition to directly influencing operand values by la-
beled input, input bytes can also have an indirect effect on
an instruction’s operands. More precisely, the value of a
memory operand can also depend on the value of an input
byte if this byte is used during the operand’s address calcu-
lation. That is, when a labeled value is used to determine
the location from which a certain value is loaded, the out-
come of the load operation depends not only on the loaded
value itself (a direct dependency) but also on the memory
address where this value is taken from. This is called an
indirect or address dependency. Therefore, when a value is
loaded from memory location L, we perform the union of
the label set of the value at location L with the label sets of
all values that are used to determine the address L.

A typical example for an indirect dependency is the use
of labeled data as an index into a table. In this case, the
result of a table lookup does not directly depend on the in-
put value, but it is indirectly influenced by the selection of
the respective table element. It is important that indirect
dependencies are tracked as well. For example, the simple
transformation of a string contained in the payload of a net-
work packet into its uppercase representation (e.g., using
the toupper() function) would break the dependencies
between the resulting string and the original labeled input
if only direct dependencies were taken into account. The
reason is that toupper() relies on a table that stores the
mappings of all 255 possible input characters to their cor-
responding uppercase representations.

Our data labeling mechanism is used as a basis to iden-
tify all input bytes that can influence the detection process.
A byte of the network stream is considered to be involved in
the detection process if it has an influence on the IDS’ con-
trol flow. More precisely, the control flow is influenced by
an input byte whenever the outcome of a conditional branch
or the target of an indirect control transfer instruction (i.e.,
an indirect call or jmp instruction) depends on that byte.
The influence of input bytes on control flow decisions can

be determined in a straightforward fashion using the propa-
gation of label sets during program execution. To this end,
whenever a labeled operand is used in a branch or indirect
control flow operation, its label set can be inspected and the
appropriate labels extracted. An interesting technical detail
is related to the fact that the Intel x86 instruction set does
not contain conditional branch instructions that use regis-
ter or memory operands. Instead, these branch instructions
evaluate a number of flag bits, which are usually set by pre-
ceding compare or test instructions. As a consequence, our
dynamic analysis has to retain the label sets of operands of
compare and test operations until a subsequent conditional
branch operation is encountered.

The dynamic monitoring of the IDS is realized with
the help of iTrace, an instruction-tracing tool developed
by our group. The iTrace tool leverages the single-step
functionality of ptrace to execute the process under anal-
ysis one instruction at the time. Before each instruction is
run, iTrace propagates the label information appropriately
to keep track of both direct and indirect dependencies. This
allows us to keep track of which bytes of the network traffic
are involved in the detection process.

3. Constraint Generation

In addition to the knowledge of which bytes of the traffic
generated by the exploit are used to identify an attack, our
dynamic data flow analysis was extended to also provide
information about how these bytes are used by the intrusion
detection sensor. In particular, in this section we explore
the approach we use to extract simple byte comparisons
(called basic constraints) as well as the approach we use to
reverse-engineer the automata used by the string matching
process.

3.1. Basic Constraints

A basic constraint is a relationship between a value from
the attack stream and a constant value that was observed to
hold for the execution trace. The value in the attack stream
can be a byte, a 16-bit short integer, or a 32-bit long integer.
For example, a constraint could specify that the 16-bit short
value in the UDP header that represents the destination port
was used in an equality comparison with the constant ‘53’.

It is important to note that a comparison operation is
used to generate a basic constraint only when the labeled
operand directly depends on the input. In addition, it is re-
quired that each byte of the operand value depends on only
a single input byte (i.e., the label set associated with each
byte contains only a single label). These restrictions en-
sure that we only generate a constraint when a change in
the input value gets directly reflected in the operand of the
corresponding comparison. Otherwise, it is not possible

5555

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 30, 2008 at 17:41 from IEEE Xplore. Restrictions apply.

to predict the effect of a change in the input, and the mu-
tant generation process only receives the information that
a certain input byte had some effect on the IDS’ execution
(without any indication of the exact check performed).

Basic constraints provide a valuable guidance to the mu-
tant generation process. In particular, the test generation
engine attempts to modify the attack so that the constraints
that were collected when the IDS successfully detected the
attack are violated. Of course, it is not always possible to
modify input values that are part of constraints. For exam-
ple, consider a constraint that relates the destination port of
a TCP packet to the value 25; since this constraint deter-
mines that the (mail) service is attacked, the mutant engine
cannot change the destination port value without rendering
the exploit ineffective as a consequence.

3.2. String Constraints

To improve the detection accuracy and reduce the false
positive rate, most intrusion detection systems use signa-
tures that, in addition to checking for constant numeric
values, also specify strings or regular expressions that are
matched against the packet payload or parts thereof. In
such cases, the strings that are searched for cannot be eas-
ily determined by only considering basic constraints. More
precisely, the basic constraints generated as a byproduct
of the pattern-matching process usually provide no indi-
cation of which strings the sensor is actually searching for.
The situation is exacerbated by the fact that most pattern-
matching algorithms do not directly compare input bytes
with expected character values but use state machines or
shift tables to find relevant matching strings. In these cases,
the input bytes are not directly used in comparison opera-
tions, but, instead, they are used indirectly by indexing a
state-transition matrix or a shift table. Thus, a different ap-
proach is required to extract the strings and the regular ex-
pressions that the pattern-matching component of an IDS is
searching for.

Our technique to extract strings and regular expressions
is based on the observation that most pattern-matching al-
gorithms use finite state machines, either explicitly or im-
plicitly, to perform the matching task. That is, at every
point of its analysis, the pattern matcher is in a certain state.
Whenever a new input character is checked (or consumed),
a transition is performed and the pattern matcher follows
the appropriate outgoing edge from the current state to
the next state (which, of course, can be the same state
again). The basic idea of our technique to extract string
constraints is to map out the finite state machine of the pat-
tern matcher by analyzing the execution traces associated
with the matching process. More precisely, we gradually
explore all the states and transitions of the pattern-matching
automaton.

Figure 1. Example of the automaton recon-
struction process.

Dynamic Reconstruction of Finite State Automata

The process of mapping out the finite state automaton used
by the NIDS is performed by sending a series of carefully
crafted packets with slightly different content. We start this
process by sending a packet with a payload that contains an
initial string composed of a sequence of identical padding
characters. Optimally, the padding character is not part of
any string that the pattern matcher searches for. However,
this is not strictly required and any character can be se-
lected, provided that repetitions of this character do not re-
sult in a matched pattern. This can easily be checked by
inspecting the detection result reported by the IDS.

The execution trace that is obtained when the pattern-
matcher processes the initial string provides the starting
point for our subsequent analysis. In particular, after the
pattern matcher has consumed a number of identical char-
acters, an additional instance of this character should not
cause a transition to another state. That is, the pattern
matcher remains in a certain state as more padding char-
acters are consumed. If this behavior can be observed in
the initial trace, we consider this state the initial point for
our analysis. Otherwise, a different padding character is
chosen.

Based on the initial state, we can start the reconstruc-
tion of the finite state machine of the pattern matcher. This
is done by injecting a single character of the input alpha-
bet into the initial string and observing the change in the
execution trace. In particular, we record the target state
after the pattern matcher has processed the injected charac-
ter. This target state is included into our reconstruction of
the pattern-matcher automaton, and we insert an edge from
the initial state to this target state, labeled with the input

5656

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 30, 2008 at 17:41 from IEEE Xplore. Restrictions apply.

character. The process is then repeated by iterating over
the remaining characters of the input alphabet, each time
recording the target state of the transition that is based on
the novel character. When a target state has not been seen
before, it is included into our state machine reconstruction.
In any case, an appropriate edge is added that connects the
current state with the target state. Whenever a state is added
to the automaton, we associate with it the string that was
sent to the pattern matcher. This string is subsequently used
to explore the outgoing transitions of the new state. Note
that although, in theory, the alphabet should contain all the
possible 256 single-byte characters, it can often be reduced
to contain only a small subset of them (e.g., the alphanu-
meric characters only).

After all possible outgoing transitions of the initial state
have been identified, the next state is examined. This pro-
cess is repeated until all states have been analyzed, and
no new states are discovered. At that point, the complete
pattern-matching automaton has been reconstructed. Final
states are identified by observing that, when reaching one
of those states, the IDS produces an alert messages.

To understand the process of mapping the states and
transitions of a finite state pattern matcher in detail, a num-
ber of questions need to be answered. In particular, we
have to introduce our approach to define the states of the
pattern matcher and describe the mechanism to recognize
transitions.

State Recognition

The state of a pattern matcher is defined as the content (val-
ues) of all memory addresses and registers that are rele-
vant for the matching process. In this definition, the term
“relevant memory addresses and registers” refers to those
locations in the virtual address space of the IDS process
that are read or written between two state transitions. Of
course, it is possible that a certain location is both read and
written (or even overwritten multiple times) between two
transitions. In these cases, only the last read or write oper-
ation is taken into account. More precisely, the content of
all relevant locations is taken as a snapshot directly before
the state transition. The rationale behind our state defini-
tion is the fact that if the relevant memory content between
two execution traces is identical at the point before a state
transition, the outcome of the matching process is only de-
termined by the characters that are consumed afterwards.
In other words, the previously-consumed characters, even
if different, have lead the pattern matcher into exactly the
same state.

Unfortunately, simply including all memory addresses
and registers that are accessed into the state can be prob-
lematic. The reason is that the IDS process might also up-
date variables that are not related to, or relevant for, the in-
ternal state of the pattern matching process. For example,
consider a variable that counts the number of input bytes

that have been processed so far or pointers into the input
stream that are increased every time a new character is pro-
cessed. If these values were included into the description
of a state, identical states would be recognized as differ-
ent, thereby preventing the extraction of the desired state
machine.

To prevent irrelevant variables (i.e., variables that are not
directly related to the internal state of the pattern matcher)
from being incorrectly included into a state, two execution
traces are performed. Recall that whenever a transition of
a certain state must be analyzed, a character from the in-
put alphabet is appended to the string associated with this
state. The resulting string is then embedded into the packet
payload (using padding characters) and sent to the IDS. Fi-
nally, the execution trace is examined. To exclude unrelated
variables, this process is extended by sending the resulting
string twice instead of only once. The second time, how-
ever, the string is shifted by a few bytes. The two execution
traces are then independently used to determine the respec-
tive target states. Finally, the states are compared and all
locations (memory addresses and registers) that are differ-
ent are removed. The idea behind this procedure is that,
since the same string is sent twice, all variables that are
directly related to the pattern matching process, should be
identical. Locations that store values related to the posi-
tion inside the payload, on the other hand, differ and can be
safely removed.

It is also possible that locations that are completely un-
related to the pattern-matching process are occasionally
touched (read or written). Including these locations into
the state is not problematic, provided that they are always
the same for a particular internal state of the finite state ma-
chine. However, we have not observed this problem in our
experiments, probably because pattern matching is usually
performance-critical, and thus implemented as succinctly
as possible in terms of memory and code.

Transition Recognition

The correct recognition of state transitions constitutes a
central part of our automaton-reconstruction process. A
transition from one state to another occurs every time a new
input character is processed (or consumed). This event is
recognized by checking for points in the execution trace
where a labeled input byte is used in a control-flow deci-
sion for the first time (i.e., as an operand of a branch in-
struction or as the target of an indirect jump/call). When
this happens, we know that a transition has occurred. In
other words, the pattern matcher has processed the labeled
byte, and moved into a new state.

By checking the execution trace for control flow instruc-
tions that process a label for the first time, we can locate
those points where the pattern-matcher transitions into new
states. Based on this information, we then extract the mem-
ory reads and writes that the IDS performs between each

5757

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 30, 2008 at 17:41 from IEEE Xplore. Restrictions apply.

pair of transitions. This information provides us with the
relevant memory locations needed to determine the states
of the pattern matcher. Note that it is possible that more
than one new label is used by a certain control flow instruc-
tion. This situation implies that the pattern matcher has
consumed more than a single input character before tran-
sitioning to a new state. However, no special treatment is
required. It is only necessary to record this fact by tagging
the edge in the reconstructed automaton appropriately.

Consider the example shown in Figure 1. After process-
ing the first characters of the input stream (which are de-
noted by ‘x’), the automaton reaches a certain state (which
is shown as the start state S0 in the example). Then, the
next character of the input stream is consumed. This is
shown in Figure 1 (b), where the character is an ‘A’. To rec-
ognize the fact that the automaton processes ‘A’, we look
for the first time a control-flow decision is based on this
character. When this decision occurs, we assume that a
transition was taken, leading to a new state S1. The next
test uses the character ’B’, as shown in Figure 1 (c). The
processing of this character leads the automaton to a new
state S2. The exploration will continue further from S2.
For example, in Figure 1 (d), it is shown how the character
’A’ might lead the automaton from S2 to S1.

Assumptions and Limitations

The string constraint extraction process described pre-
viously relies on one important underlying assumption,
which states that each input byte is only considered once
for each state transition. That is, we assume that there is
a deterministic, finite state machine underlying the pattern-
matching process that checks each input byte at most once.
In other words, it is not necessary to backtrack and “undo”
previous state transitions. This assumption holds for many
important algorithms that search for single strings (such as
Boyer-Moore [5]) or multiple strings in parallel (such as
Aho-Corasick [1]). However, this assumption is not gener-
ally valid for all the algorithms used to match regular ex-
pressions.

In particular, there are two main techniques that are
used to match regular expressions. One relies on a de-
terministic, finite automaton, which is extracted from a
non-deterministic representation of the regular expression.
For pattern matchers that use this technique (e.g., Henry
Spencer’s regular expression library for C [28], which was
later utilized in Perl), our approach is capable of correctly
reconstructing the automaton. The second technique for
regular expressions matching relies on backtracking. Back-
tracking is required in cases where the regular expression
language provides an expressive power that exceeds reg-
ular languages. For example, the ability to group a sub-
expression with brackets and recall it in the same expres-
sion is not present in a regular language and hence, can-
not be realized with a finite state machine. As a result, for

pattern matchers that use backtracking (such as the Perl-
compatible regular expression libraries - PCRE [10]), our
automaton reconstruction process will not produce correct
results. In such cases, a reconstructed automaton will typi-
cally accept a superset of the actual regular expression, be-
cause it cannot model the “secondary checks” performed
via backtracking.

4. Efficient Test Case Generation

Once the analysis process has determined which parts
of the traffic generated by an exploit are used to detect a
certain attack, we leverage this information to generate test
cases in a more focused way. Consider, for example, a sig-
nature that detects a certain attack by searching for a partic-
ular string in the URL field of every HTTP request. All at-
tack instances that are different only in their HTTP header
values (but not in the URL) can be considered equivalent
for this test, as these differences do not influence the IDS
detection process. Unfortunately, without any knowledge
of the signature, the test generation process can only try
to blindly generate all the possible variations, leading to a
very large number of equivalent test cases. However, by
using the set of constraints extracted by our dynamic data
flow analysis, it is possible to drive the test case genera-
tion process in order to generate only the “interesting” test
cases. In fact, the knowledge of how a signature is matched
allows the test case generator to focus only on those attack
variations that, while remaining inside the space of valid at-
tacks, lie outside the signature constraints of the IDS. The
result is a more focused approach that takes into account
the actual signature constraints that are relevant for detec-
tion.

We implemented this technique as an extension to
Sploit [29]. Sploit is a mutant exploit generation tool that
takes an attack template and a set of transformations as in-
put, and generates a set of different, semantically equiv-
alent versions of the attack. These variations, called mu-
tants, can then be executed against a target system in order
to test a NIDS’s ability to detect different variations of the
same attack. For this project, Sploit was modified to incor-
porate the constraint information generated by iTrace into
its mutant generation engine, as described in the following
sections.

4.1. Mapping Constraints to Exploit Fea-
tures

To be able to process the information provided by our
dynamic data flow analysis of the execution of an attack,
Sploit must first map the constraints generated by iTrace
into the corresponding features of the attack. All the dy-
namic information discussed in the previous sections is
based on the absolute positions (or labels) of bytes in the

5858

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 30, 2008 at 17:41 from IEEE Xplore. Restrictions apply.

packets that comprise the attack stream. However, Sploit
does not reason in terms of bytes, but rather in terms of pro-
tocols, commands, and command fields. Thus, a mapping
between the two representations is needed. This mapping
leverages an execution table, which stores the associations
between the positions of the bytes in the network stream
and the object that was responsible for their generation.

In Sploit, whenever an exploit sends data using a cer-
tain protocol, the corresponding protocol manager (i.e., the
object in charge of managing the protocol communication
and the list of mutant operators working at that layer) adds
to the execution table a new row with the details of the data
that is added and its location in the network stream. As
a result, by knowing the location of a byte in the network
stream, Sploit can identify the appropriate set of mutant
operators that can operate on that byte.

Note that a given byte position can be associated with
more than one mutant operator. For example, consider the
case of an attack that injects shellcode inside one of the
header fields of an HTTP request. When the HTTP request
is sent, each byte of the shellcode will be associated with
both the ShellCode and the HTTPRequest sets of mu-
tant operators.

4.2. Focusing the Test Case Generation

During signature analysis, Sploit first executes the base
exploit (i.e., the attack with no transformations applied),
and collects the constraints generated by iTrace. Then, it
relies on two subsequent refinement phases in order to de-
termine which mutant operators should be applied to gen-
erate the relevant test cases.

The first phase consists of taking into account only the
positions of the bytes that the IDS used to detect the at-
tack. As mentioned previously, based on the execution ta-
ble, Sploit maps each byte back to the corresponding por-
tion of the attack that was executed. Once all the byte po-
sitions identified as relevant for the detection process are
translated into commands and field locations within the at-
tack, Sploit can use this information to refine the mutant
generation process. In particular, Sploit disables every mu-
tant operator that does not affect any relevant part of the
attack. More general transformations that do not apply to
particular parts of the attack (e.g., IP fragmentation) are
temporarily deactivated as well, even though they can be
reconsidered again when the tool is not able to evade de-
tection using other techniques.

At the end of the first phase, all transformations that can-
not affect the parts of the attack checked by the IDS have
been removed. Even though this can considerably improve
the relevance of the test cases that are generated, a better
result can be obtained analyzing the type of constraints ex-
tracted by iTrace. In order to take them into account, Sploit
implements a second refinement phase, based on a local
simulation of the effects of each mutant operator.

In Sploit, a mutant operator can have a set of parameters
that describe in which way the transformation is applied to
the original exploit. For example, an operator that obfus-
cates the shellcode’s NOP sled can have a parameter that
contains the list of bytes that can be used to compose the
sled. This means that a single mutant operator can generate
multiple (but finite) different attack mutations. Consider
an example in which Sploit is able to pinpoint that the IDS
only checks the part of the network stream where the ex-
ploit shellcode is stored. By analyzing the dynamic con-
straints, Sploit can now incorporate information on the ex-
act checks that were performed by the IDS on the shellcode
section. For example, suppose that the IDS was searching
for a particular string, such as a sequence of 0x90 bytes,
which is often used as a NOP sled. Then, the simulation
routine cycles through the set of mutant operators selected
by the first phase and uses each of them to mutate the shell-
code for every possible value of the operator parameters.
The result of each iteration is checked against the signa-
ture constraints (in this example, represented by the string
automaton that encodes a series of 0x90 bytes). If the con-
straint is not violated, Sploit removes the parameter value
from the list of possible alternatives. Furthermore, if all
possible parameters values have been eliminated for a mu-
tant operator, the operator itself is deactivate, because its
transformation cannot evade the detection process.

It is important to note that this simulation phase does not
require generating all the possible mutants locally. For ex-
ample, suppose that for a certain attack, ten mutant opera-
tors are available, each with ten possible parameter values.
Combining them, the total number of possible test cases
that can be generated is 1010. However, the number of in-
stances that must be locally simulated is only 100: one for
each parameter value of each operator.

By applying the previous refining phases, Sploit can fo-
cus the test case generation process to produce only those
test cases that can evade at least one of the derived con-
straints. If the resulting test suite is empty, it might be the
case that some constraints could not be evaded by the avail-
able mutant operators, and more general mutation tech-
niques can be applied to try to evade the IDS.

5. Evaluation

To demonstrate the effectiveness of our technique, an
evaluation was conducted using prototype implementations
of Sploit and iTrace. In particular, we developed two dy-
namic analysis components: one for the extraction of basic
constraints and one for the extraction of string automata.
As we previously explained in Section 3.2, the string ex-
traction algorithm requires a traffic generator that can be
controlled to inject different payloads. We implemented
two different modules to create both UDP packets and TCP
sessions. Finally, we extended the Sploit tool to process the

5959

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 30, 2008 at 17:41 from IEEE Xplore. Restrictions apply.

constraints’ feedback and use them to focus the test case
generation.

A limit of the current implementation is that complex
signatures cannot be analyzed in a fully-automated fash-
ion. In fact, most IDS engines are optimized to check the
string constraints only after all the other simple constraints
contained in the signature have matched the traffic. This
implies that the IDS string analysis routine is not invoked
when simpler constraints do not match. As a result, in order
to reverse-engineer a complex signature, the user must first
set up iTrace to extract the basic constraints, then modify
the traffic generator to match these constraints, and finally
run the string extraction tool. Once the constraints have
been retrieved, the mutant generation process is completely
automatic and does not require any human intervention.

We tested our technique against two intrusion detec-
tion systems: Snort and Symantec’s NIDS. The evaluation
testbed was composed of a RedHat Linux 9 system running
several vulnerable services, a RedHat Linux 9 machine run-
ning the Sploit prototype, a Gentoo Linux 2005.0 machine
running iTrace and Snort 2.4.3, and the Symantec Network
Security 7120 appliance (also running iTrace, and patched
to version 4.0.0.11).

5.1. Dynamic Analysis of Snort Signatures

One may naturally question the use of Snort in this eval-
uation, as its standard signatures set is freely available for
analysis. This would seem to negate the motivation be-
hind our approach, since it would be easier to manually
analyze the signatures rather than infer the signature con-
straints from the execution of the IDS. However, we felt it
necessary to demonstrate our technique against known sig-
natures, in effect establishing a “ground truth” with respect
to its effectiveness.

For the first experiment, we tested the ability of our ap-
proach to generate and process basic constraints derived
from direct numeric comparisons observed by iTrace. The
signature we examined was the Snort signature for the
Samba trans2open buffer overflow [27], the relevant por-
tions of which are shown in Figure 2.

This signature contains four basic constraints, based
both on single bytes (specified through the content key-
word) and on a 16-bit short comparison (specified through
the byte test keyword). Our tool was able to extract
a set of constraints that correctly reflects all these checks.
When Sploit analyzed these constraints, it determined that
the tests for 0x00, 0xff and SMB2 were performed on
the SMB header of the packet; because Sploit possesses no
available mutant operators that operate on the SMB header,
the mutation engine could not violate these constraints. The
checks for 0x00 and 0x14, however, were performed on
a portion of the exploit that was equivalent to padding, and,
therefore, Sploit’s shellcode generator was able to gener-
ate a semantically-equivalent padding byte to replace the

0x00 byte. As a result, the attack based on this transforma-
tion was able to evade Snort, while successfully exploiting
the target application.

In order to test the ability of our approach to infer string-
matching automata, we run two sets of experiments. In
the first set, we run our component to analyze a simpli-
fied version of the complete Snort’s FTP-based signature
set (with 76 signatures). Each rule was modified in order
to eliminate any constraint that would prevent the string
matching mechanism to be executed, by including only the
content rules that were used to define the strings. In this
case, our tool was able to correctly extract all the 76 corre-
sponding automata.

For the second set of experiments, we examined the sig-
nature shown in Figure 3, associated with a remote com-
mand execution vulnerability in the Avenger’s News Sys-
tem [25].

The automaton extracted with our tool matched ex-
actly the string constraint specified by the signature (i.e.,
the constraint that requires that the URI contains the
string “/ans.pl?p=../../”). The automaton was then
loaded in Sploit and used to verify if any of the applied mu-
tant operators would affect the string. The result was a test
suite containing only the mutants with a modified URL.
Also in this case, the first test case executed, which had a
“/./” inserted into the path passed to the argument p, was
able to successfully evade Snort, while being successful at
compromising the target application.

5.2. Dynamic Analysis of Closed-source
Signatures

Having validated our approach against an open-source
IDS with known signatures, we wanted to demonstrate its
effectiveness against a closed-source intrusion detection
system. This required two different experiments. The first
experiment aimed at demonstrating that the constraints de-
rived in the case of a closed-source system correspond to
those specified by the signatures. Unfortunately, the details
of the signatures are not known for the Symantec IDS, and,
therefore, we had to use a user-defined signature to test the
precision of our constraint-derivation process with respect
to the closed-source detection engine. The goal of the sec-
ond experiment was, instead, to prove that our technique
could be used to automatically evade a signature whose im-
plementation was not known a priori.

For the first experiment, we loaded into the Symantec
NIDS a signature to detect the IIS chunked encoding at-
tack [26]. The signature contained some basic constraints
that tested for the presence of a series of constant bytes in
an HTTP chunk (PADP\r\n), used in a particular version
of the chunked encoding exploit. Then, we executed the
attack, which was correctly detected, and we collected the
sensor’s execution traces using iTrace. The analysis of the
traces allowed for the derivation of basic constraints that

6060

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 30, 2008 at 17:41 from IEEE Xplore. Restrictions apply.

netbios.rules:alert tcp $EXTERNAL_NET any -> $HOME_NET 139 (
msg:"NETBIOS SMB trans2open buffer overflow attempt";
content:"|00|"; depth:1;
content:"|FF|SMB2"; depth:5; offset:4;
content:"|00 14|"; depth:2; offset:60;
byte_test:2,>,256,0,relative,little;
reference:bugtraq,7294; reference:cve,2003-0201;
reference:url,www.digitaldefense.net/labs/advisories/DDI-1013.txt;
classtype:attempted-admin; sid:2103; rev:9;)

Figure 2. Snort SMB trans2open overflow signature.

web-misc.rules:alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (
msg:"WEB-MISC ans.pl attempt"; flow:to_server,established;
uricontent:"/ans.pl?p=../../";
reference:bugtraq,4147; reference:bugtraq,4149; reference:cve,2002-0306;
reference:cve,2002-0307; reference:nessus,10875;
classtype:web-application-attack; sid:1522; rev:10;)

Figure 3. Snort Avenger’s News System remote command execution signature.

were identical to the ones contained in our signature. The
constraints were then passed to the Sploit engine, which
generated a variation of the exploit that successfully evaded
detection.

For the following experiments, we loaded a user-defined
signature into the Symantec IDS that employed a string
match to detect an attack. More precisely, we used the same
string-based signature that we used in the analysis of Snort
(see Figure 3). Our string-derivation technique was able to
correctly identify that the string “/ans.pl?p=../../”
was used as part of the detection process. This information
was used to drive the Sploit tool, which, as in the Snort
case, focused its mutant operators on the URL content, and
successfully evaded the signature.

Finally, once we determined that our technique was able
to correctly derive both the basic and the string constraints,
we ran a second set of experiments to demonstrate that
our technique can successfully guide the evasion of closed-
source signatures for which we have no a priori knowledge.
To this end, we ran the unmodified Samba trans2open ex-
ploit over the link monitored by the Symantec IDS and ob-
served that the sensor indeed included a signature for this
attack. The dynamic taint analysis revealed a set of con-
straints that included the equality constraints on a 16-bit
word 0xd007 contained in the shellcode portion of the at-
tack. Using this information, Sploit was able to success-
fully generate a mutant that violated that particular con-
straint of the Symantec’s signature. Thus, the resulting mu-
tant exploit was able to successfully compromise the target
system while evading detection by Symantec’s NIDS.

5.3. Discussion

From these experiments, we can conclude that our dy-
namic taint analysis methodology is accurate enough to
properly reconstruct basic and string constraints used by
both open-source and closed-source intrusion detection en-
gines. The knowledge of what attack data is used by the
signatures and how it is used allowed Sploit to focus the
generation of test cases, thus increasing the chances of
spotting flaws in the corresponding signatures in a reason-
able amount of time.

For example, let us consider the experiment with the IIS
chunked encoding attack, which involves the HTTP pro-
tocol. In this case, the large number of available mutant
operators for HTTP would make the test suite far too large
for an exhaustive analysis. In fact, without any informa-
tion on the way in which the IDS detects the attacks, Sploit
generated a test suite containing tens of millions of attack
mutations. Because of that, the information about the posi-
tion of the attack data in the network stream was extremely
important. By determining that the signature matched only
a few bytes inside one of the chunks, our mutation engine
could disable all the transformations that did not operate on
the data content of an HTTP request. This reduced the suite
to just a few hundreds of test cases. Finally, taking into ac-
count also the iTrace basic constraints, Sploit could remove
additional mutant operators, leaving just the ones that op-
erate on the end-of-line characters of the chunk data.

A similar reduction in the number of test cases was ob-
served in the case of the ans.pl experiment. In this case,
however, the knowledge that the IDS is looking for some-
thing inside the URL field did not help much, because most
of the HTTP operators operate on the URL content. Fortu-

6161

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 30, 2008 at 17:41 from IEEE Xplore. Restrictions apply.

nately, the string-based constraints derived by the analysis
were very effective, reducing the number of test cases to
only five mutants.

It is important to note that, in each experiment, the first
mutant generated from the reduced test suite was success-
ful in both compromising the target and evading the NIDS
under test. As a result, instead of blindly testing a poten-
tially large set of attack variations hoping to find a combi-
nation of mutant operators that can evade the signature, our
approach was able to eliminate a large portion of useless
test cases, evading the signature under analysis on the first
attempt.

6. Related Work

The use of variations of attacks to test intrusion detec-
tion systems and other security mechanisms has recently
received considerable attention.

The idea of performing desynchronization attacks was
initially introduced by Ptacek and Newsham [20] and im-
plemented in evasion tools such as nidsbench [3] and con-
gestant [11]. Recently, a number of other techniques to per-
form desynchronization at the application level [21] and at
the attack payload level [15, 17] have been proposed. How-
ever, these techniques are mostly used as a way to evade de-
tection and not as comprehensive tools to test and evaluate
intrusion detection systems.

One of the earliest works that systematically considered
attack variations as a way to test intrusion detection sys-
tems was Raffael Marty’s Thor [12]. Thor’s design in-
cluded the possibility to generate variations at both the net-
work and the application layer. However, Thor’s imple-
mentation is limited to network-level evasion techniques,
which are orthogonal with respect to malicious payload be-
ing delivered with an attack. In addition, the only result
mentioned is the application of an evasion technique based
on IP fragmentation to an HTTP-based attack.

The first complete framework for the generation of mu-
tant attacks was Sploit [29], which was used as a basis for
the work described in this paper. Sploit defines a number
of mutant operators and provides a mutation engine that ap-
plies the operators to an exploit template to automatically
generate variations of attacks. The first Sploit prototype
successfully evaded both open-source and commercial in-
trusion detection systems. Note that Sploit does not claim
to completely cover the space of possible variations of an
attack, nor states that it guarantees that the variations of
attacks are successful. Nevertheless, it provides an effec-
tive framework for the composition of evasion techniques
to test the quality of intrusion detection signatures.

An approach similar to Sploit was introduced by Rubin
et al. in [22]. In this case, a tool called AGENT uses in-
ference rules to produce attack variations. The advantage
(and novelty) of AGENT is its formal characterization of

the type of transformations applied to an exploit. This al-
lows one to better characterize the mutation process and the
mutation space. However, its formal approach does not al-
low one to easily model very complex transformations and,
even though the mutation space can be formally described,
the approach provides no guidance as to how to explore this
space.

In [24], the same authors proposed a model to assess the
coverage of their mutant generation approach. In particu-
lar, given a set of transformation rules Φ, they defined a
mutation algorithm as Φ-complete if it can generate all the
possible attack instances derivable from the original exploit
with respect to Φ. To address the fact that this algorithm
could potentially generate an infinite number of test cases,
the authors limit the size (i.e., the number of bytes) of the
mutants that can be generated.

A first step towards a guided form of mutation explo-
ration was presented in [14], where the authors reverse-
engineered a commercial, closed-source intrusion detec-
tion system to determine the inner workings of the signa-
ture matching process. This work introduced the use of
dynamic analysis to identify which portions of an attack
were actually used in the signature matching process. The
results of this analysis were used to guide a manual eva-
sion attacks. The work presented in this paper extends the
idea of using dynamic analysis, but relies on more sophisti-
cated techniques to automatically drive an exploit mutation
engine.

An area that is related to the extraction of finite state
automata (FSA) is automata induction or grammar infer-
ence. With grammar inference, the task is to identify an
automaton, given only examples of positive (and possibly
negative) instances of the language that this automaton ac-
cepts. While the task is very hard in theory [9], there have
been numerous approaches to find acceptable solutions in
practice [2]. The most significant difference to our work is
that we do not only have information about the input and
output behavior of the automaton that we aim to infer, but
we can also observe its internal state while processing in-
put. Thus, we can potentially produce much more accurate
results.

7. Conclusions and Future Work

Mutant exploits are an effective way to test intrusion de-
tection signatures and identify “blind spots” in intrusion de-
tection systems. Even though there exist several systems
that support the generation of mutant exploits by applying
mutant operators to an exploit template, the selection of the
test cases to execute is performed either manually by a hu-
man expert or randomly.

This paper presents a novel approach to reverse engi-
neering NIDS’s signatures in order to automatically extract
a set of constraints that are used to guide the test case gener-

6262

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 30, 2008 at 17:41 from IEEE Xplore. Restrictions apply.

ation process. The approach is based on the dynamic anal-
ysis of the network intrusion detection binary to identify
which parts of a network stream are checked to identify an
attack and how the data is used in the decision process. The
results of the analysis are then used to automatically drive a
mutation engine so that it applies the most relevant mutant
operators to the detection-critical portions of the exploit.
The proposed approach was used to evade both an open-
source and a commercial, closed-source intrusion detection
systems.

Future work will focus on extending the set of con-
straints that we can extract from the signatures, and on pro-
viding a theoretical model for the automaton learning al-
gorithm that we use to reverse engineering the string con-
straints.

Acknowledgments

This research was partially supported by the National
Science Foundation, under grants CCR-0238492, CCR-
0524853, and CCR-0716095.

References

[1] A. Aho and M. Corasick. Efficient string matching: An aid
to bibliographic search. Communications of the Association
for Computing Machinery, 18(6), 1975.

[2] D. Angluin and C. Smith. Inductive Inference: Theory and
Methods. ACM Computing Surveys, 15(3), 1983.

[3] Anzen. nidsbench:a network intrusion detection system test
suite. http://packetstorm.widexs.nl/UNIX/
IDS/nidsbench/, 1999.

[4] D. Balzarotti. Testing Intrusion Detection Systems. PhD
thesis, Politecnico di Milano, 2006.

[5] R. Boyer and J. Moore. A Fast String Searching Algorithm.
Communications of the Association for Computing Machin-
ery, 20(10), 1977.

[6] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and
M. Rosenblum. Understanding Data Lifetime via Whole
System Simulation. In USENIX Security Symposium, 2004.

[7] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
L. Zhang, and P. Barham. Vigilante: End-to-end contain-
ment of Internet worms. In Proceedings of the ACM Sym-
posium on Operating Systems Principles, 2005.

[8] J. Crandall and F. Chong. Minos: Control Data Attack Pre-
vention Orthogonal to Memory Model. In 37th Interna-
tional Symposium on Microarchitecture, 2004.

[9] E. Gold. Language Identification in the Limit. Information
and Control, 5(1967), 10.

[10] P. Hazel. PCRE: Perl Compatible Regular Expressions.
http://www.pcre.org/, 2005.

[11] horizon. Defeating Sniffers and Intrusion Detection Sys-
tems. Phrack Magazine, 8(54), December 1998.

[12] IBM Zurich Research Laboratory. Thor. http:
//www.zurich.ibm.com/csc/infosec/gsal/
past-projects/thor/, 2004.

[13] S. Jha, S. Rubin, and B. Miller. Using Attack Mutation to
Test a High-End NIDS. Information Security Bulletin, vol.
10, April 2005.

[14] C. Kruegel, D. Mutz, W. Robertson, G. Vigna, and R. Kem-
merer. Reverse Engineering of Network Signatures. In Pro-
ceedings of the AusCERT Asia Pacific Information Technol-
ogy Security Conference, Gold Coast, Australia, May 2005.

[15] S. Macaulay. ADMmutate: Polymorphic Shellcode Engine.
http://www.ktwo.ca/security.html.

[16] R. Marty. Thor: A Tool to Test Intrusion Detection Sys-
tems by Variations of Attacks. Master’s thesis, ETH Zurich,
March 2002.

[17] Metasploit Project. Metasploit. http://www.
metasploit.com/, 2005.

[18] D. Mutz, G. Vigna, and R. Kemmerer. An Experience De-
veloping an IDS Stimulator for the Black-Box Testing of
Network Intrusion Detection Systems. In Proceedings of
the 2003 Annual Computer Security Applications Confer-
ence (ACSAC ’03), pages 374–383, Las Vegas, Nevada, De-
cember 2003.

[19] J. Newsome and D. Song. Dynamic taint analysis for au-
tomatic detection, analysis, and signature generation of ex-
ploits on commodity software. In Proceedings of the Net-
work and Distributed System Security Symposium (NDSS),
2005.

[20] T. Ptacek and T. Newsham. Insertion, Evasion and Denial
of Service: Eluding Network Intrusion Detection. Technical
report, Secure Networks, January 1998.

[21] R. Graham. SideStep. http://www.robertgraham.
com/tmp/sidestep.html, 2005.

[22] S. Rubin, S. Jha, and B. Miller. Automatic generation and
analysis of NIDS attacks. In Proceedings of the Annual
Computer Security Applications Conference (ACSAC), De-
cember 2004.

[23] S. Rubin, S. Jha, and B. Miller. Language-Based Genera-
tion and Evaluation of NIDS Signatures. IEEE Symposium
on Security and Privacy, Oakland, California, May, 2005.

[24] S. Rubin, S. Jha, and B. Miller. On the Completeness of
Attack Mutation Algorithms. Proceedings of the 19th IEEE
Workshop on Computer Security Foundations, pages 43–56,
2006.

[25] SecurityFocus. Avenger’s News System Remote Command
Execution Vulnerability. http://securityfocus.
com/bid/4149, 2002.

[26] SecurityFocus. Microsoft IIS Chunked Encoding Trans-
fer Heap Overflow Vulnerability. http://www.
securityfocus.com/bid/4485, 2002.

[27] SecurityFocus. Samba ‘call trans2open’ Remote Buffer
Overflow Vulnerability. http://securityfocus.
com/bid/7294, 2005.

[28] H. Spencer. regex: Regular Expression Library. http:
//arglist.com/regex/, 2005.

[29] G. Vigna, W. Robertson, and D. Balzarotti. Testing
Network-based Intrusion Detection Signatures Using Mu-
tant Exploits. In Proceedings of the ACM Conference on
Computer and Communication Security (ACM CCS), pages
21–30, Washington, DC, October 2004.

[30] D. Wagner and P. Soto. Mimicry Attacks on Host-Based
Intrusion Detection Systems. In Proceedings of the 9th

ACM Conference on Computer and Communications Se-
curity, pages 255–264, Washington DC, USA, November
2002.

6363

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 30, 2008 at 17:41 from IEEE Xplore. Restrictions apply.

