
TRESOR-HUNT: Attacking CPU-Bound Encryption

Erik-Oliver Blass
Northeastern University
blass@ccs.neu.edu

William Robertson
Northeastern University
wkr@ccs.neu.edu

ABSTRACT
Hard disk encryption is known to be vulnerable to a num-
ber of attacks that aim to directly extract cryptographic key
material from system memory. Several approaches to pre-
venting this class of attacks have been proposed, including
Tresor [18] and LoopAmnesia [25]. The common goal of
these systems is to confine the encryption key and encryp-
tion process itself to the CPU, such that sensitive key ma-
terial is never released into system memory where it could
be accessed by a DMA attack.
In this work, we demonstrate that these systems are never-

theless vulnerable to such DMA attacks. Our attack, which
we callTresor-Hunt, relies on the insight that DMA-capable
adversaries are not restricted to simply reading physical
memory, but can write arbitrary values to memory as well.
Tresor-Hunt leverages this insight to inject a ring 0 attack
payload that extracts disk encryption keys from the CPU
into the target system’s memory, from which it can be re-
trieved using a normal DMA transfer.
Our implementation of this attack demonstrates that it

can be constructed in a reliable and OS-independent manner
that is applicable to any CPU-bound encryption technique,
IA32-based system, and DMA-capable peripheral bus. Fur-
thermore, it does not crash the target system or otherwise
significantly compromise its integrity. Our evaluation sup-
ports the OS-independent nature of the attack, as well as its
feasibility in real-world scenarios. Finally, we discuss several
countermeasures that might be adopted to mitigate this at-
tack and render CPU-bound encryption systems viable.

1. INTRODUCTION
Hard disk encryption is an increasingly popular set of tech-

niques for preserving the confidentiality of persistent data.
In such approaches, each block is encrypted before writing
it to disk, and blocks are decrypted after reading them from
disk. Disk encryption is completely transparent from the
user’s perspective, and virtually all major operating sys-
tems support this security mechanism—e.g., BitLocker [16]
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for Microsoft Windows, FileVault [1] for Mac OS X, and dm-
crypt [4] for Linux. A similar functionality is provided by
prominent third-party applications such as TrueCrypt [28]
and PGP [26].

However, it has been shown previously that an adver-
sary with physical access to a machine can circumvent disk
encryption and access sensitive data. For instance, by at-
taching a malicious device to a running target machine, the
adversary can perform a so-called DMA attack [5, 2, 13,
3, 20, 12].1 Certain peripheral hardware busses—such as
FireWire, Thunderbolt, or ExpressCard—give direct, un-
fettered access to a system’s main memory. As such, the
malicious device simply reads out the encryption key used
to encrypt the hard disk using a DMA transfer. Know-
ing the secret key, the adversary can decrypt the hard disk
and access data. Such DMA attacks are not only academic,
but have already been seen in the real world [22]. As of
today, there are password-recovery toolkits available that
render DMA attacks accessible to everyone [21]. In conclu-
sion, DMA attacks pose a major threat to any unattended
machine.

To mitigate the problem of DMA attacks, recent work [18,
25] has suggested moving the encryption key from RAM to
the CPU, which is inaccessible via DMA. Additionally, en-
cryption is solely performed using CPU registers, thwarting
any attempts to reveal sensitive key material using DMA
transfers. We refer to cryptographic systems with this prop-
erty as CPU-bound.

In this paper, we show that CPU-bound hard disk en-
cryption is insecure as presented in prior work. We present
a novel, realistic, and concrete attack, where an adversary
with access to a DMA-capable hardware bus can access en-
cryption keys of a CPU-bound encryption system. The crit-
ical observation underlying our work is that attackers are
not only able to read from a system’s memory, but are also
able to write arbitrary code and data into memory. Using
this capability, we demonstrate that an attacker can expose
a CPU-bound encryption key by injecting a small piece of
code into the operating system kernel. This code transfers
the encryption key from the CPU into RAM, from which it
can be accessed using a standard DMA transfer.

To summarize, our contributions are the following:

• We demonstrate that by leveraging the write capability

1DMA, or Direct Memory Access, refers to the capability of
peripheral system hardware to transfer data to or from main
memory without the involvement of the CPU. This feature
is intended to improve system performance, but comes at
the expense of centralized memory access enforcement.



of DMA transfers, an attacker can bypass the protec-
tions afforded by CPU-bound disk encryption systems
such as Tresor [18] and LoopAmnesia [25].

• We experimentally validate the feasibility of the at-
tack by implementing it against Tresor in an OS-
independent way that only depends upon details of the
IA32(e) architecture. The resulting attack is capable
of circumventing Tresor in a matter of seconds with-
out crashing or otherwise significantly compromising
the integrity of the target system.

We note that while we concretely focus on Tresor and
FireWire-based DMA, our attack is directly applicable
to all CPU-bound disk encryption systems, all IA32(e)-
based systems, and all peripheral busses with DMA
capabilities such as Thunderbolt or ExpressCard.

• We discuss potential mitigation strategies for our at-
tack that improve the security of CPU-bound disk en-
cryption.

The remainder of this paper is structured as follows. In
Section 2, we present relevant background information on
CPU-bound disk encryption, and on Tresor in particular.
We present our specific attack on Tresor in Section 3, and
evaluate its efficacy in Section 4. We discuss the feasibility
of our attack and of CPU-bound encryption in Section 5.
Finally, we present related work and briefly conclude in Sec-
tions 6 and 7.

2. BACKGROUND
CPU-bound disk encryption systems are intended to ren-

der normal disk encryption systems resilient to evil maid at-
tacks [23], cold boot attacks [7], and other scenarios where
attackers might gain physical access to a running target
system. In this section, we describe the threat model, as-
sumptions, and implementation of Tresor [18], a recent,
representative example of CPU-bound disk encryption. We
stress, however, that while we ground our discussion in the
example of Tresor, the main ideas directly carry over to
similar proposals such as LoopAmnesia. Where appropri-
ate, we highlight details specific to Tresor.

2.1 Threat Model
Tresor adopts a strong adversarial model, in which at-

tackers can execute arbitrary code in ring 3 on IA32 systems.
Therefore, attackers can execute code with root privileges on
UNIX-like systems, or as ADMINISTRATOR or SYSTEM
on Windows-based systems. However, attackers should not
be able to execute code in ring 0, and Tresor takes several
steps to prevent this from occurring—even when such execu-
tion would normally be allowed—that are described below.
Similarly, attackers should not be able to access kernel mem-
ory.
Tresor assumes that it is run directly on the hardware,

and not as a virtualized guest that could be introspected by
a privileged host operating system.
Tresor does not guarantee that legitimate ring 0 code

will not leak information about the encryption key from the
CPU, e.g., by copying values from debug registers or exe-
cuting program paths that are dependent on debug register
values.

As Tresor is intended to prevent most realistic physical
attacks against hard disk encryption, attackers can exam-
ine the contents of memory using a number of techniques,
including hardware bus inspection, cold boot attacks, and
DMA transfers initiated by peripheral devices. It is assumed
that directly inspecting CPU state is difficult, for instance by
attaching JTAG debuggers or specialized hardware probes.

2.2 Implementation
Tresor, and other CPU-bound disk encryption systems,

maintains the confidentiality of the encryption key by con-
fining it and the encryption process to the CPU. In the fol-
lowing, we discuss the specifics of how Tresor accomplishes
this.

Key Storage.
Because CPU registers are not directly accessible by DMA

transfers, Tresor uses them to store the encryption key.
However, even though CPU registers cannot be directly ac-
cessed through DMA, they could be indirectly read without
taking extra precautions. Software running in user space can
be preempted, and user space registers will automatically be
persisted to memory as part of a context switch. Using user
space registers would therefore be prone against a well-timed
DMA attack against the process control blocks of the ker-
nel. This automatically disqualifies pure user space-based
approaches.

Therefore, Tresor uses the debug registers dr0, dr1, dr2,
and dr3, giving a total of 4 · 32 = 128 bits of storage for 32-
bit machines, or 4 · 64 = 256 bits of storage for 64-bit ma-
chines. This is enough to accommodate AES-128 or AES-
256, respectively. In addition, the IA32 hardware specifica-
tion ensures that the debug registers are inaccessible outside
of ring 0 code.

An ASCII passphrase is initially entered at system boot
time. The kernel then derives an AES key from the user’s
input using SHA-256 applied a number of times, and stores
the resulting key into the debug registers. The kernel im-
mediately wipes the memory used for the initial passphrase
and AES key derivation. On multi-core machines, the same
key is written in the debug registers of all cores.

Other CPU-bound encryption schemes use different regis-
ters for the same purpose. For instance, LoopAmnesia uses
Intel Machine Specific Registers (MSRs), and the previous
version of Tresor uses the Intel Streaming SIMD Exten-
sion (SSE) registers [17].

AES Implementation.
Tresor relies upon the Intel AES-NI instruction set to

perform AES encryption. Recent Intel CPUs—e.g., Core i5
and Core i7—implement this instruction set to support AES
encryption and decryption in hardware. The aesenc(x,y)

CPU instruction performs one round of AES encryption
(SubBytes, ShiftRows, MixColumns, and AddRoundKey) in
one CPU cycle. Here, (x,y) are drawn from the set of
sixteen SSE registers xmm0 to xmm15. The first register x

contains the current round key, and the second register y

contains the current state of the AES encryption. The out-
put of aesenc, the AES state, is written into the destination
register y. Therewith, Tresor encrypts one plaintext block
completely outside of RAM.

To generate the different round keys completely outside of
RAM, Tresor uses the aeskeygenassist instruction. The
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Figure 1: Overview of Tresor-Hunt. The attacker overwrites physical memory in the target system to hook an interrupt
handler. Then, an attack payload is executed that extracts the disk encryption key from the CPU into memory. The attacker
can then initiate a DMA transfer to obtain the key.

AES key is copied from the debug registers into the first SSE
register xmm0. Using aeskeygenassist, the 13 subsequent
round keys can be derived from xmm0 and are written into
xmm1 to xmm13.
To enable access to SSE registers during encryption, Tre-

sor defines the complete 14 round AES encryption within
an atomic block in the kernel. This block cannot be in-
terrupted, and SSE registers are saved while entering this
block and restored before leaving. Being atomic, neither
preemption by scheduling nor interrupts can disturb AES
encryption and potentially leak the content of the registers
to RAM.
Finally, Tresor exports its AES interface to the Linux

Crypto-API. This makes it available to standard Linux disk
encryption software such as dm-crypt.

Kernel Integrity.
As dictated by the threat model, Tresor assumes that at-

tackers cannot run arbitrary code in ring 0. To enforce this,
Tresor takes additional steps to prevent the otherwise-
allowed execution of attacker-controlled code in a kernel con-
text.

1) The ptrace system call is modified to disallow access
to the debug registers. Normally, ptrace allows user
space programs such as debuggers to read and write
debug registers, e.g., to set hardware breakpoints.

2) Kernel memory introspection from user space, enabled
by special devices such as /dev/kmem, is disallowed.
Otherwise, an attacker with sufficient ring 3 privileges
could trivially read and write into kernel space, modi-
fying, e.g., the atomic block within the kernel to read
out debug registers.

3) Similarly, support for loadable kernel modules (LKMs)
is removed. Otherwise, an attacker can insert a kernel
module that reads out the debug registers.

These assumptions can be generalized to a kernel integrity
property. Essentially, any CPU-bound encryption system
depends on the integrity of kernel code, which is difficult to
guarantee in general. We will now demonstrate that, even

if the above assumptions hold and kernel integrity can be
guaranteed against any local attacker with full user space
privileges, DMA-based attacks are powerful enough to cir-
cumvent all of the above protection mechanisms.

3. A CPU-BOUND ENCRYPTION ATTACK
While CPU-bound disk encryption systems like Tresor

increase the difficulty for an adversary to compromise disk
encryption keys, they are not impervious to attack under
the threat model discussed in Section 2. In this section, we
present an end-to-end attack against Tresor, which we call
Tresor-Hunt. Note that while we focus on Tresor as a
case study, the techniques we employ generalize to any com-
bination of CPU-bound disk encryption scheme, IA32-based
OS, and DMA-capable hardware bus. In particular, while
incorporating OS-specific knowledge would greatly simplify
the attack—and would clearly be desirable should this infor-
mation be confirmed for a particular target—we show that
OS-specific details are not required, and that the attack is
equally applicable to Windows, Mac OS X, and Linux with-
out a priori knowledge of which OS is deployed on the tar-
get.

3.1 Attack Overview
Figure 1 presents a graphical overview of the attack. We

outline the individual steps here.

1) First, the attacker gains physical access to the running
IA32-based target system and attaches a device to a
DMA-capable bus, e.g., FireWire.

2) The device initiates a DMA transfer to recover the
contents of physical memory.

3) The device analyzes the physical memory dump, and
identifies the kernel paging structures and interrupt
descriptor table (IDT).

4) Using information derived from these structures, the
device prepares an attack payload.

5) The device performs a DMA transfer to inject the at-
tack payload into the memory of the target system.



6) The payload executes within a kernel context—i.e.,
ring 0—and copies the Tresor encryption key from
the CPU into a predetermined location in physical
memory.

7) The device initiates a final DMA transfer to obtain the
disk encryption key from memory.

Note that each of the above steps makes no assumptions
on the target system aside from the presence of a DMA-
capable bus and an IA32-derived architecture. In particular,
virtually any modern OS for this architecture will make use
of hardware paging for features such as process isolation and
virtual memory, as well as interrupt handling for features
such as device service requests and scheduling.
In the following, we discuss details of the individual steps

of the attack.

3.2 Accessing System Memory
In our instantiation of the attack, we use a FireWire bus

to perform DMA transfers to and from system memory.
FireWire, or IEEE 1394, is a hardware specification for
high-speed peer-to-peer device communication. Most im-
portantly for our purposes, since FireWire is DMA-capable,
it allows for unimpeded access to main memory.
Our prototype extends Inception [13], an existing tool

for gaining privileged access to machines with an accessible
FireWire bus. The tool’s main purpose is to attack common
(non-CPU-bound) disk encryption systems by using physi-
cal memory overwrites to grant root access to an attacker.
The particular overwrites to perform are guided by a set of
hardcoded signatures for a set of popular Linux-based oper-
ating systems. However, we merely build upon Inception’s
ability to read and write to physical memory. The remain-
der of our attack is built as a novel extension to the tool,
and bears only superficial resemblance to its approach.
A notable limitation of FireWire is that it is limited to

accessing the first 4 GB of memory. This limitation, how-
ever, did not impede the ability of our attack to successfully
compromise Tresor keys. This is due to the fact that the
memory of interest resides at a relatively low physical ad-
dress for the systems we attacked. Additionally, given the
nature of the data structures we target, there is little reason
to expect that this condition will not hold in other environ-
ments.

3.3 Hijacking Kernel Control Flow
Given a physical memory dump of the system obtained

by Inception, the objective is then to analyze the dump in
order to successfully execute code in ring 0—i.e., within the
kernel context. An obvious approach here would be to use
standard kernel hooking techniques; that is, to overwrite
a known kernel function pointer to redirect control flow to
code that we inject into physical memory. This approach,
however, requires OS-specific knowledge to identify these
function pointers and, therefore, is not suitable when the
target OS is not known a priori.
Instead, the approach we adopt is to rely only upon data

structures present in the target system’s memory that are
required by the IA32 architecture specification. In partic-
ular, our attack uses a combination of the kernel paging
structures and interrupt descriptor table (IDT) to identify
suitable locations to a) inject an attack payload to execute
in ring 0, and b) to redirect control flow to that payload.

In the following discussion, we refer to the IA32e—i.e., 64
bit—representation of these structures. Since it is relatively
straightforward to heuristically infer the machine word size
for a target architecture by examining a physical memory
dump, we assert that this is without loss of generality.

IA32e Interrupt Descriptor Table (IDT).
The IDT is an IA32-specific structure that allows software

to register handlers for system events such as interrupts and
exceptions. The IDT itself is a contiguous array of descrip-
tors that map an interrupt vector to an interrupt service
routine (ISR). Each vector serves as an index into the ar-
ray. Examples of standard interrupt vectors for the IA32
architecture include the breakpoint exception #BP (3), the
general protection exception #GP (13), and page fault excep-
tion #PF (14). In addition, system-specific handlers can be
mapped for vectors 32-255.

The CPU refers to the IDT’s location in memory through
the IDTR register, the value of which is loaded from memory
and stored to memory using the lidt and sidt instructions,
respectively. The IDTR specifies both the size of the IDT
(minus 1), and the base of the table in memory.

The IDT serves as an ideal, OS-agnostic mechanism for lo-
cating code on IA32-based systems with the following prop-
erties: a) the code executes in ring 0, and b) it is potentially
executed very often. While directly overwriting an IDT in
memory is inadvisable due to the certain consequence that
the machine will reset itself, each IDT entry does point to a
function that can be hooked.

In particular, the approach we adopt is to select a system-
specific interrupt vector, resolve its handler, and extract the
first 16 bytes. We save these for later restoration. Then, we
inject a jump to the location of our attack payload. This
payload will be responsible for implementing our attack, as
well as removing the hook and restoring the original initial
ISR instruction sequence.

Identifying the IDT.
While the attack is, in principle, straightforward, there

are several difficulties that arise. The first has to do with
identifying the location of the IDT in memory. Recall that
the standard means for accomplishing this is to execute the
sidt instruction, which stores the value of the IDTR register
into a specific location in memory. For instance, the follow-
ing assembly routine would place the contents of IDTR in the
memory location specified by the first argument in rdi.

; extern void __sidt(void *idtr)

bits 64

section .text

global __sidt

__sidt:

sidt [rdi]

ret

Unfortunately, this is a chicken-and-egg problem: to exe-
cute our attack, we need to locate the IDT, but before we
gain control of the system, we cannot execute any instruc-
tions. Similarly, our DMA-based access to the system does
not allow us to directly examine the state of the CPU.



Instead, we utilize a technique for heuristically identifying
an IDT by scanning a physical memory dump. Our heuris-
tics rely both on architectural constraints on IDTs as well
as the fact that there exists much regularity in the values
for each field of each IDT entry. While these constraints are
certainly not foolproof, our experiments demonstrate that
our heuristics are effective in practice.
In particular, our scan searches for a block of contiguous

memory that satisfies the following properties.

1) The memory region is page-aligned to a 4 KB bound-
ary.

2) The high-order bits of each entry’s ISR are self-similar.

3) The type of each entry is one of the three permissible
values—i.e., 5, 6, or 7.

We found that this approach was sufficient to reliably
identify IDT locations in our experiments. For more details,
please refer to Section 4.

Identifying IA32e Paging Structures.
Locating the IDT in memory is not the only challenge,

unfortunately. A second obstacle arises from the fact that
interrupt vector handlers are specified as linear addresses,
while the attacker’s device is restricted to a physical view
of memory. That is, the target kernel is executing in pro-
tected mode, with a set of paging structures mapping linear
addresses to physical addresses. In contrast, the attacker’s
device addresses physical memory. Therefore, without the
ability to associate linear addresses with physical addresses,
the device is unable to perform (at least) three critical tasks:
a) locate the physical address of a particular ISR given its
virtual addresses in the IDT, b) hook the ISR with the vir-
tual address of the attack payload, and c) construct the at-
tack payload such that it refers to the virtual address of the
original ISR in order to remove the hook.
Therefore, in addition to locating the IDT, it is necessary

to parse the kernel memory map as specified by the kernel
paging structures. However, we face a similar situation to
the case of the IDT and sidt instruction. The root of the
paging structures is usually contained in the cr3 register,
but accessing that value requires execution of multiple mov

instructions. Of course, the attacker is unable to do so at
this point.
Accordingly, we adopt a similar approach of heuristically

identifying the kernel’s paging structures. Here, we rely on a
combination of architectural constraints and OS-independent
characteristics of kernel memory maps. In particular, we
scan physical memory for a hierarchical paging structure
that exhibits the following properties.

1) The paging structure tree is rooted at a valid page map
level 4 (PML4) table.

2) PML4 entries, if present, point to valid page directory
pointer tables (PDPTs).

3) PDPT entries, if present, point to valid page directo-
ries (PDs).

4) PD entries, if present, point to valid page tables (PTs).

5) Each node in the tree is page-aligned to a 4 KB bound-
ary.

6) Reserved bits in each entry at each node of the tree
are properly set to zero.

7) The ratio of pages with only ring 0 access to those with
ring 3 access is above a fixed threshold.

8) The number of mapped pages is above a fixed thresh-
old.

The first two properties above are architectural constraints;
the second two are universal characteristics of kernel mem-
ory maps (most pages should only be accessible to the ker-
nel, and a minimum number of pages should be mapped
into physical memory). As in case of the IDT identification
heuristics, the above was sufficient to uniquely identify the
kernel paging structures in our experiments.

3.4 Preparing an Attack Payload
After resolving the location of the IDT and kernel paging

structures, the next step is to construct the actual attack
payload—i.e., the code that will be injected into the system
to execute with ring 0 privileges. Given the address of the
ISR to hook and the first 16 bytes of that ISR, this is quite
simply accomplished by patching a compiled attack template
such as shown in Figure 2. In particular, INT_ADDR_MARK is
a special byte sequence that marks the location of the attack
payload to patch with the address of the original ISR. Sim-
ilarly, INST_BUF_MARK is a special byte sequence that marks
the location to save the original initial instruction sequence
for the target ISR.

3.5 Executing the Attack Payload
Execution of the attack payload requires two additional

steps: a) injecting the payload into a writable and exe-
cutable page in kernel memory, and b) patching the target
ISR to redirect control flow to the location of the injected
payload.

Our attack prototype accomplishes the first task by travers-
ing the kernel memory map to discover a suitable physical
page. The second task is completed by selecting a tar-
get ISR and replacing its initial instructions with a jmp

ATTACK_PAYLOAD_ADDR instruction. At that point, the next
time that the selected interrupt is raised, control of the sys-
tem will be redirected to the attack payload. It will copy the
contents of the debug registers to a predetermined location
in RAM, unhook the targeted ISR, and continue execution
of that ISR. The attacker’s device will then copy out the en-
cryption key, defeating the CPU-bound property of the disk
encryption system.

4. EVALUATION
In the following section, we report on an evaluation of

Tresor-Hunt. In particular, we focus on two key aspects of
the attack: a) how effective are the heuristics used to identify
IDTs and kernel paging structures, and b) how effective is
the attack in practice.

4.1 Data Structure Identification
The goal of this experiment is to quantify the accuracy

of the heuristics we use to identify IDTs and kernel pag-
ing structures. Accordingly, we extracted physical memory
dumps for several IA32-based operating systems, including
Linux 3.3.7, FreeBSD 9.0, and Mac OS X 10.7.3, and ap-
plied our heuristics. In each case, we successfully identified



global extract_key

; extract the disk encryption key

extract_key:

; copy debug registers

mov rax, dr0

mov [dbg_regs.dr0 wrt rip], rax

mov rax, dr1

mov [dbg_regs.dr1 wrt rip], rax

mov rax, dr2

mov [dbg_regs.dr2 wrt rip], rax

mov rax, dr3

mov [dbg_regs.dr3 wrt rip], rax

; restore original instructions

mov rdx, INT_ADDR_MARK

mov rax, [inst_buf.x0 wrt rip]

mov [rdx], rax

mov rax, [inst_buf.x1 wrt rip]

mov [rdx+0x08], rax

; jump to original handler

jmp [rdx]

; original instruction buffer

inst_buf:

.x0 dq INST_BUF_MARK

.x1 dq 0x00

; debug register dump

dbg_regs:

.dr0 dq 0x00

.dr1 dq 0x00

.dr2 dq 0x00

.dr3 dq 0x00

global attack_len

attack_len dq $-extract_key

Figure 2: Example Tresor-Hunt attack payload template.

OS Handler MSBs

Linux 3.3.7 0xffffffff81000000

FreeBSD 9.0 0xffffffff80b00000

Mac OS X 10.7.3 0xffffff80002d0000

Table 1: Common bits for IDT entry handler addresses for
a selection of IA32-based operating systems.

the IDT for each operating system when compared to the
ground truth of executing the sidt instruction.
Table 1 displays the results of one aspect of the heuristics,

namely the check for common bits of potential ISR handler
addresses. For each OS tested, it is clear that many of the
most-significant bits are shared, and they clearly correspond
to kernel linear addresses, which tend to be located high in
virtual memory.
A similar experiment was performed for the heuristics to

resolve the location of the kernel paging structures. In this
case, kernel drivers were written to directly access cr3 as
appropriate, since (as opposed to the sidt instruction) ac-

cess to cr3 is architecturally restricted to ring 0 code. In
all cases, our heuristics were able to uniquely identify the
correct location of the PML4 table.

As a result, while it is certainly possible to falsely iden-
tify an IDT or kernel paging structure, we conclude that
our heuristics are effective in practice. We speculate that
this might be partially attributable to the fact that we per-
form our scan as a linear sweep from low to high physical
addresses. Since the data structures of interest tend to be
initialized early in the boot process, they also tend to reside
in low physical memory and are therefore discovered before
false positives might be encountered.

4.2 Performance
In this experiment, we validate that Tresor-Hunt is able

to efficient and successfully extract disk encryption keys
from the CPU. Since Tresor is only available for Linux,
we performed this experiment solely for that OS, although
we speculate that the results of this experiment would not
differ significantly in other environments.

We performed 10 trials of the attack against a Linux
3.0.31 kernel patched with Tresor on machine with an In-
tel Core i7 CPU and 16 GB of memory. In each case, the
time to perform the attack was dominated by the time to
extract the initial physical memory dump, which was on the
order of several minutes. In comparison, the time required
to analyze the memory dump, construct the attack payload,
inject the payload, and extract the key was negligible.

As a result, we conclude that the attack is highly feasible
for the threat model described in Section 2, where an adver-
sary can gain unobserved physical access to a DMA-capable
bus on an unattended target machine.

5. DISCUSSION
We have demonstrated that CPU-bound encryption is in-

sufficient to securely encrypt a hard disk in the face of DMA
attacks. However, we will now discuss other techniques that
allow efficient, realistic protection against such attacks.

Disabling DMA.
The most intuitive way to prevent DMA attacks is to

simply disable DMA. Microsoft suggests this, for example
to protect BitLocker full disk encryption [15]. Similarly,
the “old” Linux FireWire protocol stack ieee1394 (until
2010 [10]) offered a command line parameter phys_dma=0

when loading the FireWire kernel module to completely dis-
able DMA [8].

While disabling DMA is an effective protection of DMA
attacks, this solution is not acceptable in many scenarios
due to the implied performance penalty.

A more sophisticated way of disabling DMA for FireWire
is used in Mac OS X Lion with FileVault 2 [1]: FireWire is
only disabled is the host machine enters “sleep” mode, e.g.,
the lid of a laptop is closed. To re-enable DMA, the user
password has to be entered on wake-up of the machine. This
protection helps against DMA attacks, e.g., if a laptop is left
somewhere “unattended”, but does not offer any defense in
case of desktop or server machines that are running most of
the time unattended.

Device Whitelisting.
The DMA attack we have demonstrated requires attach-



ing a malicious device to a target machine’s FireWire port.
The malicious device initiates DMA transfers to carry out
the attack. To do so, however, the target machine’s FireWire
controller has to generally enable DMA transfer for this de-
vice. By default, today’s operating systems enable DMA for
any device attached.
Consequently, one way to mitigate DMA attacks would

be to authenticate any DMA device to the kernel before al-
lowing to perform DMA transfer, i.e., enabling DMA at the
FireWire controller. Only valid, benign FireWire devices
trusted by the user will get permission to use DMA. How-
ever, the FireWire standard does not support device-host
authentication. Enabling strong cryptographic authentica-
tion would require deep changes in the FireWire firmware
on devices and host controllers.
Still, a weaker form of authentication, simple “identifica-

tion” is possible even with standard FireWire devices and
firmwares. Each FireWire device comes with a 64 bit Glob-
ally Unique IDentifier (GUID) readable by the kernel. As
soon as a new FireWire device is attached to the FireWire
bus, kernel and host controller reset and re-initialize the
FireWire bus. As part of the initialization, the host con-
troller can enable DMA for all attached devices.
For increased security, instead of simply enabling DMA by

default, the kernel can check in advance the GUID of the at-
tached FireWire device. If the GUID is part of a “whitelist”
of allowed FireWire devices, the kernel will allow DMA for
the host controller, otherwise the kernel will disable DMA.
The only requirement for this is a kernel accessible whitelist
where the user stores the GUID of his trusted FireWire de-
vices. Using the FireWire stack of current Linux kernels, this
whitelisting technique can be implemented in a straightfor-
ward manner by modifying the host controller initialization
code in init_ohci1394_dma.c and ohci.c.
The above identification is clearly not authentication: if

an attacker can spoof or guess the GUID of a trusted device,
an impersonation attack is possible. Still, if the user protects
access to his trusted FireWire devices, the GUID can provide
sufficient protection against DMA attacks.

Hardware Disk Encryption.
With hardware disk encryption techniques, the actual en-

cryption and decryption of data is performed by the hard
disk itself and not by the host machine. Only during an ini-
tial phase at, e.g., boot time the host exchanges an encryp-
tion key with the hard disk. DMA attacks are impossible
against hardware disk encryption. Many hard disk manufac-
turers offer hard disk with hardware disk encryption [24, 9,
27]. Although using hardware disk encryption successfully
protects against DMA attacks, current solutions only fill a
niche: they are (hardware) specific, only support the Win-
dows operating system, often require support for Trusted
Computing hardware on the host computer, and are expen-
sive compared to software-based solutions.

IOMMU.
Similar to a traditional memory management unit (MMU),

an IOMMU is a piece of hardware that controls access to
physical memory for peripheral devices. Located between
DMA-capable devices and the physical memory, it trans-
lates virtual addresses as used by DMA devices into physi-
cal memory addresses. Moreover, an IOMMU controls which
device can read or write to which physical memory address.

Consequently, by using an IOMMU, the kernel could ex-
plicitly protect certain memory regions against reading or
writing. The availability of an IOMMU would not only
protect against DMA-based attacks, but also render CPU-
bound encryption superfluous. As memory regions contain-
ing a cryptographic key can be protected using the IOMMU,
there would be no need to perform encryption outside RAM
anymore.

In practice, only recently Intel and AMD have introduced
IOMMUs (“VT-d” and “AMD-Vi”) for their latest chipsets.
Currently IOMMUs are used in hypervisors to allow safe
DMA transfers between attached devices and guest operat-
ing systems. As a matter of fact, today none of the popular
operating systems supports IOMMU, and enabling support
for IOMMUs requires significant changes to the operating
system.

6. RELATED WORK
TreVisor [19] is a CPU-bound encryption system that

isolates the encryption process in a hypervisor (BitVisor)
on top of Linux. In addition, TreVisor uses Intel’s VT-d
IOMMU technology to restrict memory regions accessible by
DMA to protect the integrity of the hypervisor. While effec-
tive, this approach has several drawbacks that render it im-
practical in the real world. First, the use of a hypervisor au-
tomatically disables virtualization software such VirtualBox
and VMware, as well as rendering debug registers inacces-
sible. Second, although the authors use Intel’s AES-NI [11]
technology to compute individual AES rounds in hardware,
performance decreases by up to 50% in this setup. Finally,
Intel’s recent VT-d IOMMU is not used by any major oper-
ating system today, and we do not conjecture its availability
in the near future since using an IOMMU requires major
changes to an operating system and its kernel.

Mac OS X’s FileVault 2 [1] has been reported to dis-
able FireWire and Thunderbolt DMA whenever the com-
puter goes into “sleep mode” (standby), for example as soon
as the user closes the lid of a laptop [14, 6]. If the user
wakes up the computer from sleep, an “unlock password”
has to be entered to resume normal operation and re-enable
DMA. While in theory this is an effective countermeasure
against any DMA attack, it is not applicable to a running
system. Along the same lines, to protect BitLocker disk en-
cryption again DMA attacks, Microsoft suggests disabling
DMA transfer completely [15].

A related hardware attack against disk encryption sys-
tems is the cold boot attack [7]. A cold boot attack exploits
the fact that contents of DRAM memory usually survives
for some amount of time without power. An attacker can
physically remove memory modules from a target machine,
analyze them, and recover sensitive data. Contrary to DMA
attacks, cold boot attacks can be mitigated with CPU-bound
encryption.

7. CONCLUSIONS
CPU-bound encryption systems, such as LoopAmnesia

and Tresor, attempt to prevent the disclosure of disk en-
cryption keys from powerful adversaries that have full ring 3
privileges and physical access to the machine. In this paper,
we present Tresor-Hunt, a novel, realistic, and concrete
attack that bypasses the protection afforded by one such
system.



Our attack relies on the insight that DMA-capable adver-
saries are not restricted to simply reading physical memory,
but can write arbitrary values to memory as well. Tresor-
Hunt leverages this insight to inject a ring 0 attack payload
that extracts disk encryption keys from the CPU into the
target system’s memory, from which it can be retrieved using
a normal DMA transfer.
Our implementation of this attack demonstrates that it

can be constructed in a reliable and OS-independent manner
that is applicable to any CPU-bound encryption technique,
IA32-based system, and DMA-capable peripheral bus. Fur-
thermore, it does not crash the target system or otherwise
significantly compromise its integrity. Our evaluation sup-
ports the OS-independent nature of the attack, as well as its
feasibility in real-world scenarios. Finally, we discuss several
countermeasures that might be adopted to mitigate this at-
tack and render CPU-bound encryption systems viable.
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