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Run-time Detection of
Heap-based Overflows

William Robertson, Christopher Kruegel, Darren Mutz, and Fredrik Valeur
– University of California, Santa Barbara

ABSTRACT

Buffer overflows belong to the most common class of attacks on today’s Internet. Although
stack-based variants are still by far more frequent and well-understood, heap-based overflows have
recently gained more attention. Several real-world exploits have been published that corrupt heap
management information and allow arbitrary code execution with the privileges of the victim process.

This paper presents a technique that protects the heap management information and allows
for run-time detection of heap-based overflows. We discuss the structure of these attacks and our
proposed detection scheme that has been implemented as a patch to the GNU Lib C. We report the
results of our experiments, which demonstrate the detection effectiveness and performance impact
of our approach. In addition, we discuss different mechanisms to deploy the memory protection.

Introduction

Buffer overflow exploits belong to the most feared
class of attacks on today’s Internet. Since buffer over-
flow techniques have reached a broader audience, in
part due to the Morris Internet worm [1] and the Phrack
article by AlephOne [2], new vulnerabilities are being
discovered and exploited on a regular basis. A recent
survey [3] confirms that about 50% of vulnerabilities
reported to CERT are buffer overflow related.

The most common type of buffer overflow attack
is based on stack corruption. This variant exploits the
fact that the return addresses for procedure calls are
stored together with local variables on the program’s
stack. Overflowing a local variable can thus overwrite
a return address, redirecting program flow when the
function returns. This potentially allows a malicious
user to execute arbitrary code.

Recently, however, buffer overflows that corrupt
the heap have gained more attention. Several CERT
advisories [4,5] describe exploits that affect widely
deployed programs. Heap-based overflows can be
divided into two classes: One class [6] comprises
attacks where the overflow of a buffer allocated on the
heap directly alters the content of an adjacent memory
block. The other class [7,8] comprises exploits that
alter management information used by the memory
manager (i.e., malloc and free functions). Most malloc
implementations share the behavior of storing man-
agement information within the heap space itself. The
central idea of the attack is to modify the management
information in a way that will allow subsequent arbi-
trary memory overwrites. In this way, return
addresses, linkage tables or application level data can
be altered. Such an attack was first demonstrated by
Solar Designer [9].

This paper introduces a technique that protects
the management information of boundary-tag-based

heap managers against malicious or accidental modifi-
cation. The idea has been implemented in Doug Lea’s
malloc for GNU Lib C, version 2.3 [10], utilized by
Linux and Hurd. It could, however, be easily extended
to other systems such as various free BSD distribu-
tions. Using our modified C library, programs are pro-
tected against attacks that attempt to tamper with heap
management information. It also helps to detect pro-
gramming errors that accidentally overwrite memory
chunks, although not as complete and verbose as
available memory debuggers. Program recompilation
is not required to enable this protection. Every appli-
cation that is dynamically linked against Lib C is
secured once our patch has been applied.

Related Work

Much research has been done on the prevention
and detection of stack-based overflows. A well-known
result is StackGuard [11], a compiler extension that
inserts a ‘canary’ word before each function return
address on the stack. When executing a stack-based
attack, the intruder attempts to overflow a local buffer
allocated on the stack to alter the return address of the
function that is currently executing. This might permit
the attacker to redirect the flow of execution and take
control of the running process. By inserting a canary
word between the return address and the local vari-
ables, overflows that extend into the return address
will also change this canary and thus, can be detected.

There are different mechanisms to prevent an
attacker from simply including the canary word in his
overflow and rendering the protection ineffective. One
solution is to choose a random canary value on pro-
cess startup (i.e., on exec) that is infeasible to guess.
Another solution uses a terminator canary that consists
of four different bytes commonly utilized as string ter-
minator characters in string manipulation library
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functions (such as strcpy). The idea is that the attacker
is required to insert these characters in the string used
to overflow the buffer to overwrite the canary and
remain undetected. However, the string manipulation
functions will stop when encountering a terminator
character and thus, the return address remains intact.

A similar idea is realized by StackShield [12].
Instead of inserting the canary into the stack, however,
a second stack is kept that only stores copies of the
return addresses. Before a procedure returns, the copy
is compared to the original and any deviations lead to
the abortion of the process. Stack-based overflows
exploit the fact that management information (the
function return address) and data (automatic variables
and buffers) are stored together. StackGuard and
StackShield are both approaches to enforcing the
integrity of in-band management information on the
stack. Our technique builds upon this idea and extends
the protection to management information in the heap.

Other solutions to prevent stack-based overflows
are not enforced by the compiler but implemented as
libraries. Libsafe and Libverify [13,14] implement and
override unsafe functions of the C library (such as str-
cpy, fscanf, getwd). The safe versions estimate a safe
boundary for buffers on the stack at run-time and
check this boundary before any write to a buffer is
permitted. This prevents user input from overwriting
the function return address.

Another possibility is to make the stack segment
non-executable [15]. Although this does not protect
against the actual overflow and the modification of the
return address, the solution is based on the observation
that many exploits execute their malicious payload
directly on the stack. This approach has the problem
of potentially breaking legitimate uses such as func-
tional programming languages that generate code dur-
ing run-time and execute it on the stack. Also, gcc
uses executable stacks as function trampolines for
nested functions and Linux uses executable user stacks
for signal handling. The solution to this problem is to
detect legitimate uses and dynamically re-enable exe-
cution. However, this opens a window of vulnerability
and is hard to do in a general way.

Less work has been done on protecting heap
memory. Non-executable heap extensions [16, 17] that
operate similar to their non-executable stack cousins
have been proposed. However, they do not prevent
buffer overflows from occurring and an attacker can
still modify heap management information or over-
write function pointers. They also suffer from break-
ing applications that dynamically generate and execute
code in the heap.

Systems that provide memory protection are mem-
ory debuggers, such as Valgrind [18] or Electric Fence
[19]. These tools supervise memory access (read and
write) and intercept memory management calls (e.g.,
malloc) to detect errors. These tools use an approach

similar to ours in that they attempt to maintain the
integrity of the utilized memory. However, a check is
inserted on every memory access, while our approach
only performs a check when allocating or deallocating
memory chunks. Memory debuggers effectively prevent
unauthorized memory access and stop heap-based buffer
overflows. Yet, they also impose a serious performance
penalty on the monitored programs, which often run an
order of magnitude slower. This is not acceptable for
most production systems.

A recent posting on bugtraq pointed to an article
[20] that discusses several techniques to protect stack
and heap memory against overflows. The presented
heap protection mechanism follows similar ideas as our
work as it aims at protecting heap management informa-
tion. However, no details were provided and no imple-
mentation or evaluation of their technique exists.

A possibility of preventing stack-based and heap-
based overflows altogether is the use of type-safe lan-
guages such as Java. Alternatively, solutions have been
proposed [21] that provide safe pointers for C. All these
systems can only be attacked by exploiting vulnerabili-
ties [22, 23] in the mechanisms that enforce the type
safety (e.g., bytecode verifier). Note, however, that safe
C systems typically require new compilers and recompi-
lation of all applications to be protected.

Technique

Heap Management in GNU Lib C (glibc)
The C programming language provides no built-

in facilities for performing common operations such as
dynamic memory management, string manipulation or
input/output. Instead, these facilities are defined in a
standard library, which is compiled and linked with
user applications. The GNU C library [10] is such a
library that defines all library functions specified by
the ISO C standard [24], as well as additional features
specific to POSIX [25] and extensions specific to the
GNU system [26].

Two kinds of memory allocation, static and auto-
matic, are directly supported by the C programming
language. Static allocation is used when a variable is
declared as static or global. Each static or global vari-
able defines one block of space of a fixed size. The
space is allocated once, on program startup as part of
the exec operation and is never freed. Automatic allo-
cation is used for automatic variables such as a func-
tion arguments or local variables. The space for an
automatic variable is automatically allocated on the
stack when the compound statement containing the
declaration is entered, and is freed when that com-
pound statement is exited.

A third important kind of memory allocation,
dynamic allocation, is not supported by C variables
but is available via glibc functions. Dynamic memory
allocation is a technique in which programs determine
during run-time where information should be stored. It
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is needed when the amount of required memory or
when the lifecycle of memory usage depends on fac-
tors that are not known a-priori. The two basic func-
tions provided are one to dynamically allocate a block
of memory (malloc), and one to return a previously
allocated block to the system (free). Other routines
(such as calloc, realloc) are then implemented on top
of these two procedures.

GNU Lib C uses Doug Lea’s memory allocator
dlmalloc [27] to implement the dynamic memory allo-
cation functions. dlmalloc utilizes two core features,
boundary tags and binning, to manage memory
requests and releases on behalf of user programs.

Memory management is based on ‘chunks,’
memory blocks that consist of application usable
regions and additional in-band management informa-
tion. The in-band information, also called boundary
tag, is stored at the beginning of each chunk and holds
the sizes of the current and the previous chunk. This
allows for coalescing two bordering unused chunks
into one larger chunk, minimizing the number of unus-
able small chunks as a result of fragmentation. Also,
all chunks can be traversed starting from any known
chunk in either a forward or backward direction.

Chunks that are currently not in use by the appli-
cation (i.e., free chunks) are maintained in bins,
grouped by size. Bins for sizes less than 512 bytes
each hold chunks of only exactly one size; for sizes
equal to or greater than 512 bytes, the size ranges are
approximately logarithmically increasing. Searches for
available chunks are processed in smallest-first, best-
fit order, starting at the appropriate bin depending on
the memory size requested. For unallocated chunks,
the management information (boundary tag) includes
two pointers for storing the chunk in a double linked
list (called free list) associated with each bin. These
list pointers are called forward (fd) and back (bk).

On 32-bit architectures, the management infor-
mation always contains two 4-byte size-information
fields (the chunk size and the previous chunk size).
When the chunk is unallocated, it also contains two
4-byte pointers that are utilized to manipulate the dou-
ble linked list of free chunks for the binning.

This basic algorithm is known to be very effi-
cient. Although it is based upon a search mechanism
to find best fits, the use of indexing techniques (i.e.,
binning) and the exploitation of special cases lead to
average cases requiring only a few dozen instructions,
depending on the machine and the allocation pattern.
A number of heuristic improvements have also been
incorporated into the memory management algorithm
in addition to the main techniques. These include
locality preservation, wilderness preservation, mem-
ory mapping, and caching [28].

Anatomy of a Heap Overflow Exploit
The use of in-band forward and back pointers to

link available chunks in bins exposes glibc’s memory

management routines to a security vulnerability. If a
malicious user is able to overflow a dynamically allo-
cated block of memory, that user could overwrite the
next contiguous chunk header in memory. When the
overflown chunk is unallocated, and thus in a bin’s
double linked list, the attacker can control the values
of that chunk’s forward and back pointers. Given this
information, consider the unlink macro used by glibc
shown below:

#define unlink(P, BK, FD) { \
[1] FD = P->fd; \
[2] BK = P->bk; \
[3] FD->bk = BK; \
[4] BK->fd = FD; \

}

Intended to remove a chunk from a bin’s free list, the
unlink routine can be subverted by a malicious user to
write an arbitrary value to any address in memory.

In the unlink macro shown above, the first
parameter P points to the chunk that is about to be
removed from the double linked list. The attacker has
to store the address of a pointer (minus 12 bytes, as
explained below) in P→fd and the desired value in
P→bk. At line [1] and [2], the values of the forward
(P→fd) and back pointer (P→bk) are read and stored in
the temporary variables FD and BK, respectively. At
line [3], FD gets dereferenced and the address located
at FD plus 12 bytes (the offset of the bk field within a
boundary tag) is overwritten with the value stored in
BK. This technique can be utilized, for example, to
change an entry in the program’s GOT (Global Offset
Table) and redirect a function pointer to code of the
attacker ’s choice.

A similar situation occurs with the frontlink
macro (shown in Figure 1).

The task of this macro is to store the chunk of
size S, pointed to by P, at the appropriate position in
the double linked list of the bin with index IDX. FD is
initialized with a pointer to the start of the list of the
appropriate bin at line [1]. The loop at line [2]
searches the double linked list to find the first chunk
that is larger than P or the end of the list by following
consecutive forward pointers (at line [3]). Note that
every list stores chunks ordered by increasing sizes to
facilitate a fast smallest-first search in case of memory
allocations. When an attacker manages to overwrite
the forward pointer of one of the traversed chunks
with the address of a carefully crafted fake chunk, he
could trick frontlink into leaving the loop (at line [2])
with FD pointing to this fake chunk. Next, the back
pointer BK of that fake chunk would be read at line
[4] and the integer located at BK plus 8 bytes (8 is the
offset of the fd field within a boundary tag) would be
overwritten with the address of the chunk P at line [5].

The attacker could store the address of a function
pointer (minus 8 bytes) in the bk field of the fake
chunk, and therefore trick frontlink into overwriting
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#define frontlink(A, P, S, IDX, BK, FD) { \
...

[1] FD = start_of_bin(IDX);
[2] while ( FD != BK && S < chunksize(FD) ) { \
[3] FD = FD->fd; \

} \
[4] BK = FD->bk; \

...
[5] FD->bk = BK->fd = P; \

Figure 1: frontlink Macro.

this function pointer with the address of the chunk P at
line [5]. Although this macro does not allow arbitrary
values to be written, the attacker may be able to store
valid machine code at the address of P. This code
would then be executed the next time the function
pointed to by the overwritten integer is called.

struct malloc_chunk
{

INTERNAL_SIZE_T prev_size;
INTERNAL_SIZE_T size;
struct malloc_chunk *bk;
struct malloc_chunk *fd;

};

prev_size
size
fd
bk

user data
...

Freed chunk

prev_size
size

Allocated chunk

user data
...
...
...

Figure 2: Original memory chunk structure and mem-
ory layout.

A variation on the heap overflow exploit
described above is also possible, involving the manip-
ulation of a chunk’s size field instead of its list point-
ers. An attacker can supply arbitrary values to an adja-
cent chunk’s size field, similar to the manipulation the
list pointers. When the size field is accessed, for
example during the coalescing of two unused chunks,
the heap management routines can be tricked into con-
sidering an arbitrary location in memory, possibly
under the attacker’s control, as the next chunk. An
attacker can set up a fake chunk header at this location
in order to perform an attack as discussed above. If an
attacker is, for some reason, unable to write to the list
pointers of an adjacent chunk header but is able to
reach the adjacent chunk’s size field, this attack repre-
sents a viable alternative.

Heap Integrity Detection
In order to protect the heap, our system makes

several modifications to glibc’s heap manager, both in
the structure of individual chunks as well as the man-
agement routines themselves.

struct malloc_chunk
{

INTERNAL_SIZE_T magic;
INTERNAL_SIZE_T __pad0;
INTERNAL_SIZE_T prev_size;
INTERNAL_SIZE_T size;
struct malloc_chunk *bk;
struct malloc_chunk *fd;

};

Freed chunk

Allocated chunkmagic
__pad0
prev_size
size

user data
...
...
...

magic
__pad0
prev_size
size
fd
bk

user data
...

Figure 3: Modified memory chunk structure and
memory layout.

Figure 2 depicts the original structure of a mem-
ory chunk in glibc.

The first element in protecting each chunk’s
management information is to prepend a canary to the
chunk structure, as shown in Figure 3. An additional
padding field, __pad0, is also added (dlmalloc requires
the size of a header of a used chunk to be a power of
two). The canary contains a checksum of the chunk
header seeded with a random value, described below.
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The second necessary element of our heap pro-
tection system is to introduce a global checksum seed
value, which is held in a static variable (called
__heap_magic). This variable is initialized during pro-
cess startup with a random value, which is then pro-
tected against further writes by a call to mprotect. This
is in contrast to stack protection schemes [29] that rely
on repetitive calls to mprotect; since we only require a
single invocation during process startup, we do not
suffer from any related run-time performance loss
associated with other schemes.

The final element of the heap protection system
is to augment the heap management routines with
code to manage and check each chunk’s canary.
Newly allocated chunks to be returned from malloc
have their canary initialized to a checksum covering
their memory location and size fields, seeded with the
global value of __heap_magic. Note that the checksum
function does not cover the list pointer fields for allo-
cated chunks, since these fields are part of the chunk’s
user data section. The new chunk is then released to
the application.

When a chunk is returned to the heap manage-
ment through a call to free, the chunk’s canary is
checked against the checksum calculation performed
when the chunk was released to the application. If the
stored value does not match the current calculation, a
corruption of the management information is assumed.
At this point, an alert is raised, and the process is
aborted. Otherwise, normal processing continues; the
chunk is inserted into a bin and coalesced with border-
ing free chunks as necessary. Any free list manipula-
tions which take place during this process are prefaced
with a check of the involved chunks’ canary values.
After the deallocated chunk has been inserted into the
free list, its canary is updated with a checksum cover-
ing its memory location, size fields, and list pointers,
again seeded with the value of __heap_magic.

The elements described above effectively prevent
writes to arbitrary locations in memory by modifying a
chunk’s header fields without being detected, whether
through an overflow into or through direct manipula-
tion of the chunk header fields. Each allocated chunk is
protected by a randomly-seeded checksum over its
memory location and size fields, and each free chunk is
protected by a randomly-seeded checksum over its
memory location, size fields, and list pointers. Each
access of a list pointer is protected by a check to insure
that the integrity of the pointers has not been violated.
Also, each use of the size field is protected. Further-
more, the checksum seed has been protected against
malicious writes to guarantee that it cannot be overwrit-
ten with a value chosen by the attacker.

As a beneficial side-effect, common program-
ming errors such as unintended heap overflows or
double invocations of free are detected by this system
as well. A double call to free refers to the situation
where a programmer mistakenly attempts to deallocate

the same chunk twice. This error is detected due to a
checksum mismatch. When the chunk is deallocated
for the first time, its canary is updated to a new value
reflecting its position on the free list. When the second
call to free is executed, the checksum is checked
again, with the assumption that it is an allocated
chunk. However, since the canary has been updated
and the check fails, an alarm is raised.

A limitation of our approach is the fact that we
do not address general pointer corruption attacks, such
as subversion of an application’s function pointers.
The system does not guarantee the integrity of user
data contained within chunks in the heap; rather, the
system guarantees only that the chunk headers them-
selves are valid.

It is also worth noting that the heap implementa-
tion included with glibc already contains functionality
that attempts to ensure the integrity of the heap man-
agement information for debugging purposes. How-
ever, use of the debugging routines incurs significant
cost in a production environment. The routines per-
form a full scan of the heap’s free lists and global state
during each execution of a heap management function,
and include checks unrelated to heap pointer exploita-
tion. Furthermore, there is no guarantee that all attacks
are detected. Not all list manipulations are checked,
and malicious values could pass integrity checks
which are not specifically intended to protect against
malicious overflows. Thus, we conclude that the
included debugging functionality is not suitable for
protecting against the vulnerabilities that we address.

The system described above has been imple-
mented for glibc 2.3 and glibc 2.2.9x, pre-release ver-
sions of glibc 2.3 utilized by RedHat 8.0. However,
the techniques developed for glibc are easily adaptable
to other heap designs, including those shipped with the
various BSD derivatives or commercial Unix imple-
mentations. Thus, further work is planned to apply this
technique to other popular open systems besides glibc.

Evaluation

The purpose of this section is to experimentally
verify the effectiveness of our heap protection tech-
nique. We also discuss the performance impact of our
proposed extension and its stability.

To assess the ability of our protection scheme,
we obtained several real-world exploits that perform
heap overflow attacks against vulnerable programs.
These were

• WU-Ftpd File Globbing Heap Corruption Vul-
nerability [30] against wuftpd 2.6.0,

• Sudo Password Prompt Heap Overflow Vulner-
ability [31] against sudo 1.6.3, and

• CVS Directory Request Double Free Heap Cor-
ruption Vulnerability [32] against cvs 1.11.4.

In addition, we used two proof-of-concept pro-
grams presented in [8] that demonstrate examples of
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the exploit techniques using the unlink and the
frontlink macro, respectively. We also developed a
variant of the unlink exploit to demonstrate that dlmal-
loc’s debugging routines can be easily evaded and do
not provide protection comparable to our technique.

All vulnerable programs were run under RedHat
Linux 8.0. The exploits have been executed three times,
once with the default C library (i.e., glibc 2.2.93), once
with the patched library including our heap integrity
code, and once with the default C library and enabled
debugging. The third run was performed to determine
the effectiveness of the built-in debugging mechanisms
in detecting heap-based overflows.

Table 1 shows the results of our experiments. A
column entry of ‘shell’ indicates that an exploit was
successful and provided an interactive shell with the
credentials of the vulnerable process. A ‘segfault’
entry indicates that the exploit successfully corrupted
the heap, but failed to run arbitrary code (note that it
might still be possible to change the exploit to gain
elevated privileges). ‘aborted’ means that the memory
corruption has been successfully detected and the pro-
cess has been terminated.

The results show that our technique was successful
in detecting all corruptions of in-bound management
information, and safely terminated the processes. Note
that the built-in debugging support is also relatively
effective in detecting inconsistencies, however, it does
not offer complete protection and imposes a significantly
higher performance penalty than our patch.

Package glibc glibc + heap prot. glibc + debugging
WU-Ftpd shell aborted aborted
Sudo shell aborted aborted
CVS segfault aborted aborted
unlink shell aborted aborted
frontlink shell aborted aborted
debug evade shell aborted shell

Table 1: Detection effectiveness.

Package glibc glibc + heap prot. glibc + debugging
Loop 1,587 2,033 (+ 28%) 2,621 (+ 65%)
AIM 9 5,094 5,338 (+ 5%) 7,603 (+ 49%)

Table 2: Micro-Benchmarks.

The performance impact of our scheme has been
measured using several micro- and macro-bench-
marks. We are aware of the fact that the memory man-
agement routines are an important part of almost all
applications, and therefore, it is necessary to imple-
ment them efficiently. It is obvious that our protection
approach inflicts a certain amount of overhead, but we
also claim that this overhead is tolerable for most real-
world applications and is easily compensated for by
the increase in security.

To get a baseline for the worst slowdown that
can be expected, we wrote a simple micro-benchmark

that allocates and frees around four million (to be
more precise, 222) objects of random sizes between 0
and 1024 bytes in a tight loop. The maximum size of
1024 was chosen to obtain a balanced distribution of
objects in dedicated bins (for chunks with sizes less
than 512 bytes) and objects in bins that cover a range
of different sizes (for chunks with sizes greater than or
equal to 512 bytes). We also utilized the dynamic
memory benchmark present in the AIM 9 test suite
[33]. Table 2 shows the average run-time in millisec-
onds over 100 iterations for the two micro-bench-
marks. We provide results for a system with the
default glibc, the glibc with heap protection and the
glibc with debugging.

For more realistic measurements that reflect the
impact on real-world applications, we utilized Mind-
craft’s WebStone [34] and OSDB [35]. WebStone is a
client-server benchmark for HTTP servers that issues a
number of HTTP GET requests for specific pages on a
We b server and measures the throughput and response
latency of each HTTP transfer. OSDB (open source
database benchmark) is a benchmark that evaluates the
I/O throughput and general processing power of GNU
Linux systems. It is a test suite built on AS3AP, the
ANSI SQL Scalable and Portable Benchmark, for eval-
uating the performance of database systems.

Figure 4 and Figure 5 show the throughput and
the response latency measurements for an increasing
number of HTTP clients in the WebStone benchmark,
for both the default glibc and the patched version. We
used an Intel Pentium 4 with 1.8 GHz, 1 GB RAM,
Linux RedHat 8.0, and a 3COM 905C-TX NIC for the
experiments, running Apache 2.0.40. It can be seen
that even for hundred simultaneous clients, virtually
no performance impact was recorded. Similar results
have been obtained for OSDB 0.15.1. The following
Table 3 shows the measurements for 10 parallel clients
that used our test machine (the same as above) to full
capacity, running a PostgreSQL 7.2.3 database. The
results show the total run-time in seconds for the sin-
gle-user and multi-user tests.

We also attempted to assess the stability of the
patched library over an extended period in time. For this
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purpose, the patch was installed on the Lab’s web server
(running Apache 2.0.40) and CVS server (running cvs
1.11.60). A patched library was also used on two desk-
top machines, running RedHat 8.0 and Gentoo 1.4,
respectively. Although the web server only receives a
small number of requests, the CVS server is regularly
used for our software development and the desktop
machines are the workstations of two of the authors. All
machines were stable and have been running without
any problems for a period of several weeks.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 20  30  40  50  60  70  80  90  100

R
es

po
ns

e 
T

im
e 

(s
)

Clients

glibc
glibc + heap protection

Figure 4: HTTP client response time.

 91

 91.2

 91.4

 91.6

 91.8

 92

 92.2

 92.4

 20  30  40  50  60  70  80  90  100

T
hr

ou
gh

pu
t (

M
b/

s)

Clients

glibc
glibc + heap protection

Figure 5: HTTP client throughput.

Package glibc glibc + heap prot.
OSDB 6,015 6,070 (+ 0.91%)

Table 3: OSDB benchmark.

Installation

Several methods of deploying our heap protec-
tion system have been developed, in order to accom-
modate various system environments and levels of

desired protection. Many important security mecha-
nisms are not applied because of the complexity and
the required effort during setup. We provide different
avenues that range from the installation of a pre-com-
piled package (with minimal effort) to a complete
source rebuild of glibc.

One method is to download and install our
library modifications as a source patch against glibc.
Administrators can select the version appropriate to
their system and apply it against a pristine glibc source
tree before proceeding with the usual glibc source
installation procedure. Source-based distributions,
such as Gentoo Linux, can also easily incorporate
these patches into their packaging system.

A second method of deploying is to create pack-
ages for various distributions of Linux that replace the
system glibc image with a version containing our
modifications (such as RedHat RPMs). The advantage
of this approach is that virtually all applications on the
target machine will be automatically protected against
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heap overflow exploitation, with the exception of
those applications which are statically linked against
glibc or perform their own memory management. A
possible disadvantage is that these applications will
also experience some level of performance degrada-
tion, which could be prohibitive in some high-perfor-
mance environments.

A third method of deploying our heap protection
system uses packages that install a protected glibc
image alongside the existing image, instead of replac-
ing the system’s glibc image altogether. A  script is
provided that utilizes the system loader’s LD_
PRELOAD functionality to substitute the protected
glibc image for the system image for an individual
application. This allows an administrator to selectively
enable protection only for certain applications (e.g., an
administrator may not feel it necessary to protect
applications which cannot be executed remotely, and
therefore may wish to only protect those applications
which are network-accessible). This is also a suitable
path for admins that are afraid of potentially destabi-
lizing their entire system by performing a system-wide
deployment of a heap modification which has not
undergone the extensive real-world testing that stan-
dalone dlmalloc has.

All of the described installation methods are doc-
umented in detail on our website, located at
http://www.cs.ucsb.edu/˜rsg/heap/ . Packages for vari-
ous popular distributions and source patches can be
downloaded as well.

Conclusions

This paper presents a technique for detecting
heap-based overflows that tamper with in-band mem-
ory management data structures. We discuss different
ways to mount such attacks and show our mechanism
to detect and prevent them. We implemented a patch
for glibc 2.3 that extends the utilized data structures
with a canary that stores a checksum over the sensitive
data. This checksum calculation involves a secret seed
that makes it infeasible for an intruder to guess or fake
the canary in an attack.

Experience shows that system administrators are
often reluctant to adopt security measures in the sys-
tems they administer. Installing new tools may require
significant effort to understand how to best apply the
technology in the administrator’s network, as well as
investment in training end users. Additionally, apply-
ing a new tool may interfere with existing critical sys-
tems or impose unacceptable run-time overhead. This
paper introduces a heap protection mechanism that
increases application security in a way that is nearly
transparent to the functioning of applications and is
invisible to users. Applying the system to existing
installations has few drawbacks. Recompilation of
applications is rarely required, and the system imposes
minimal overhead on application performance.
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