
PIK 27 (2004) 4 219

INTRUSION DETECTION K.G. Saur Verlag, München, 2004

C. Kruegel, W. Robertson, and G. Vigna

Using Alert Verification 
to Identify Successful 
Intrusion Attempts

Christopher Kruegel is an Assistant
Professor with the Automation Systems
Group at the Technical University
Vienna. Before that, he was working as
a research post-doc for the Reliable
Software Group at the University of Cal-
ifornia, Santa Barbara. He received his
PhD with honors in computer science
from the Technical University Vienna
while working as a research assistant for
the Distributed Systems Group. His re-

search interests include most aspects of computer security,
with an emphasis on network security, intrusion detection and
vulnerability analysis.

William Robertson is a PhD student with
the Reliable Software Group at UC
Santa Barbara. His research interests
include static analysis, vulnerability
analysis, reverse engineering, and sys-
tem hardening.

Giovanni Vigna is an Associate Profes-
sor in the Department of Computer Sci-
ence at the University of California in
Santa Barbara. His current research in-
terests include intrusion detection, secu-
rity of mobile code systems, vulnerability
analysis, and wireless systems. In par-
ticular, he worked on developing frame-
works for the modular development of
both misuse-based and anomaly-based
intrusion detection systems. Giovanni

Vigna received his M.S. with honors and Ph.D. from Politecnico
di Milano, Italy, in 1994 and 1998, respectively.

ABSTRACT

Intrusion detection systems monitor protected networks and at-
tempt to identify evidence of malicious activity. When an attack
is detected, an alert is produced, and, possibly, a countermeas-
ure is executed. A perfect intrusion detection system would be
able to identify all the attacks without raising any false alarms.
In addition, a countermeasure would be executed only when an
attack is actually successful. Unfortunately false alarms are
commonplace in intrusion detection systems, and perfectly be-
nign events are interpreted as malicious. In addition, non-rele-

vant alerts are also common. These are alerts associated with
attacks that were not successful. Such alerts should be tagged
appropriately so that their priority can be lowered.

The process of identifying alerts associated with successful at-
tacks is called alert verification. This paper describes the differ-
ent issues involved in alert verification and presents a tool that
performs real-time verification of attacks detected by an intru-
sion detection system. The experimental evaluation of the tool
shows that verification can dramatically reduce both false and
non-relevant alerts.

1 INTRODUCTION

The goal of intrusion detection systems (IDSs) is to identify ev-
idence of malicious activity. This is done by analyzing one or
more streams of input events, using different techniques.

Events can be of different nature and level of granularity. For ex-
ample, they may represent network packets, operating system
calls, audit records produced by the operating system auditing
facilities, or log messages produced by applications.

One way to characterize IDSs is according to the type of events
they analyze. Network-based IDSs are systems that analyze
network traffic, application-based IDSs are systems that oper-
ate on the logs produced by specific applications, and host-
based IDSs analyze events produced by the operating system.

Event streams are used by intrusion detection systems in two
different ways, according to two different paradigms: anomaly
detection and misuse detection. In anomaly detection systems
[JV94, KRL97, GWC98, WFP99], historical data about a sys-
tem’s activity and specifications of the intended behavior of us-
ers and applications are used to build a profile of the “normal”
operation of the system. Then, the intrusion detection system
tries to identify patterns of activity that deviate from the defined
profile. Misuse detection systems take a complementary ap-
proach [NFR01, Pa98, Ro99, NP99, VVK03, IS04]. Misuse de-
tection systems are equipped with a number of attack descrip-
tions (or “signatures”) that are matched against the stream of
audit data looking for evidence that the modeled attack is occur-
ring. Misuse and anomaly detection both have advantages and
disadvantages. Misuse detection systems can perform focused
analysis of the audit data and they usually produce a limited
amount of false positives (which are erroneous detection), but
they can detect only those attacks that have been modeled.
Anomaly detection systems have the advantage of being able
to detect previously unknown attacks. This advantage is paid
for in terms of the large number of false positives and the diffi-
culty of training a system with respect to a very dynamic envi-
ronment.



220 PIK 27 (2004) 4

Kruegel, Robertson, Vigna Using Alert Verification to Identify Successful Intrusion Attempts

Independent of the type of event stream analyzed or the tech-
niques used to identify malicious activity, every IDS produces
as output intrusion alerts. An intrusion alert is a report that de-
scribes what malicious activity was identified and, often, addi-
tional information such as who are the attacker(s) and the vic-
tim(s). The information contained in an alert may change de-
pending on the type of intrusion detection technique adopted
and the type of event stream analyzed. For example, if an at-
tack has been detected by analyzing the audit information pro-
duced by an operating system, it is likely that the alert will con-
tain the process identifier (PID) of the attacking process or the
identifier of a file that was involved in the attack. As another ex-
ample, if the attack was detected by analyzing network traffic,
the alert may contain the ports and IP addresses used on both
the attacker’s and the victim’s side. The particular technique
used to identify intrusions also influences the information that is
included in an alert. For example, while a misuse-based system
might provide a precise characterization of an attack (e.g.,
“Nachia Worm Scan”), anomaly detection systems are usually
less precise and they normally provide an assessment of how
unusual certain activity is (e.g., “This sequence of system calls
has never been used before by this application”).

The intrusion detection community soon recognized the prob-
lem of providing a common alert format and an Internet Engi-
neering Task Force (IETF) working group, named the Intrusion
Detection Working Group (IDWG) was created. The Intrusion
Detection Working Group defined data formats and exchange
procedures for sharing information of interest to intrusion detec-
tion and response systems, and to management systems which
may need to interact with them. The main outcome was the In-
trusion Detection Message Exchange Format [CD03] data
model (IDMEF). IDMEF provides a standard representation for
intrusion alerts. This representation defines the syntax of an
alert and specifies the semantics of certain attributes.

However, the IDMEF effort is mostly concerned with syntactic
rules. It is possible, and common, that sensor implementers
choose different names for the same attack1, provide incom-
plete information for certain fields, or choose to include addi-
tional fields to store relevant data. As a result, similar informa-
tion can be labeled differently or can be included in different
fields. Because there is no specification for the content of most
fields, they can be filled with meaningless strings (most com-
monly, “unknown” is used). To remedy this shortcoming, the in-
trusion detection community would benefit greatly from a
shared alert model that extends the current IDMEF work with
semantic information and a common attack-naming scheme.

In a perfect world, intrusion detection systems would be able to
correctly detect and identify all the attacks whose evidence ap-
pears in the analyzed event stream. Moreover, IDSs would be
able to do so without making any mistakes, that is, without pro-
ducing any false positives, and, in addition, the alerts produced
would be in a format that allows for interoperation between dif-
ferent intrusion detection systems.

Unfortunately, intrusion detection systems have been increas-
ingly brought to task for failing to meet the expectations that re-
searchers and vendors were raising. Promises that IDSs would
be capable of reliably identifying malicious activity never turned
into reality. While virus scanners and firewalls have visible ben-
efits and remain virtually unnoticed during normal operation, in-

trusion detection systems are known for producing a large
number of alerts that are either not related to malicious activity
or not representative of a successful attack (non-relevant posi-
tives). Although tuning and proper configuration may eliminate
the most obvious spurious alerts, the problem of the vast imbal-
ance between actual and false or non-relevant alerts remains.

One problem is the fact that intrusion detection systems are of-
ten run without any (or very limited) information of the network
resources that they protect. Marty Roesch, the developer of
Snort [Sno, Ro99], routinely brings up this point in his whitepa-
per [RNA] and posts to security mailing lists [Sec] and calls for
an IDS that possesses knowledge of the network components
it defends. The classic example that Marty uses is the scenario
of a Code Red attack that targets a Linux web server. It is a
valid attack that is seen on the network, however, the alert that
an IDS raises is of no use because the service is not vulnerable
(as Code Red can only exploit vulnerabilities in Microsoft’s IIS
web server). To mitigate this problem, Roesch introduces a
concept called RNA, real-time network awareness [RNA]. RNA
is based on passive network monitoring to establish an over-
view of the hosts and services that are being protected. This
overview contains enough contextual information to distinguish
between Linux and Windows servers, thus enabling a “network-
aware” IDS to discard a Code Red attack against a Linux ma-
chine.

The problem is that the concept of network-awareness is not
broad enough to completely capture the complexity that is at
the core of excessive amounts of false alarms. When a sensor
outputs an alert, there are three possibilities.

1. The sensor has correctly identified a successful attack. This
alert is most likely relevant (i.e., a true positive).

2. The sensor has correctly identified an attack, but the attack
failed to meet its objectives (i.e., non-relevant positive).

3. The sensor incorrectly identified an event as an attack. The
alert represents incorrect information (i.e., a false positive).

Most people/sites are only interested in type-1 alerts, that is,
correct detections. Although some sites might be interested in
failed attack attempts (type-2), the corresponding alert should
be differentiated from a successful instance. The key idea of
alert verification is to distinguish between successful and failed
intrusion attempts (both false and non-relevant positives).
While contextual information can be helpful to perform this dis-
tinction (as we have seen in the example with the Code Red
worm above), it is not always sufficient. Consider a Code Red
worm attacking a patched Microsoft IIS server. In this case, it is
not enough to know which operating system the host is using,
but it is also required to know which application is running and
which patches have been applied.

Alert verification is a term that we use for all mechanisms that
can help to determine whether an attack was successful or not.
This information is passed to the intrusion detection system to
help differentiate between type-1 alerts and type-2/type-3
alerts. When the success of an attack is a priori impossible
(e.g., no vulnerable service is running) or the verification proc-
ess determines that the attack has not been successful (e.g.,
because incorrect buffer overflow offsets were used), the IDS
can react accordingly and suppress the alert or reduce its prior-
ity.

The next section classifies different mechanisms to implement
alert verification. In Section 3, we present our implementation,

1 There is no mandatory naming convention, and currently a few different
competing schemes such CVE [CVE] or Bugtraq IDs [Bug] exist.



PIK 27 (2004) 4 221

Using Alert Verification to Identify Successful Intrusion Attempts Kruegel, Robertson, Vigna

which is based on Nessus [Nes] and Snort [Sno]. With this con-
figuration, we demonstrate how Snort, an open-source network
intrusion detection system, was modified to utilize information
provided by Nessus, a popular vulnerability scanner, to signifi-
cantly improve Snort’s detection accuracy. Section 4 gives
more details on our experience with the deployed tool. Section
5 discusses related work and potential areas where the pre-
sented system could be applied. Section 6 concludes and out-
lines future work.

2 ALERT VERIFICATION

Alert verification is defined as the process of verifying the suc-
cess of attacks. That is, given an attack (and a corresponding
alert raised by an intrusion detection system), it is the task of
the alert verification process to determine whether this attack
has succeeded or not.

There are different techniques that can be used to perform this
verification. One possibility is to compare the configuration of
the victim machine (e.g., operating system, running services,
service version) to the requirements for a successful attack.
When the victim is not vulnerable to a particular attack (be-
cause the configuration does not satisfy the attack require-
ments), then the alert can be tagged as failed. For example, a
certain exploit might require that the victim is running a vulner-
able version of a Microsoft IIS server. When the victim’s config-
uration shows that it is running an Apache server on Linux, the
exploit cannot possibly succeed.

Another possibility is to model the expected “outcome” of at-
tacks. The “outcome” describes the visible and verifiable traces
that a certain attack leaves at a host or on the network (e.g., a
temporary file or an outgoing network connection). When an
alert has to be verified, the system can check for these traces.

An important distinction between different alert verification
mechanisms is whether they are active or passive. Active veri-
fication mechanisms are defined as mechanisms that gather
configuration data or forensic traces after an alert occurs. Pas-
sive mechanisms, on the other hand, gather configuration data
once (or at regular, scheduled intervals) and have data availa-
ble before the attack occurs. Both active and passive tech-
niques can be used to check attack requirements against victim
configurations. To check for traces that might be left after an at-
tack, only active mechanisms can be employed. Note that the
distinction between active and passive mechanisms is solely
based on the point in time when the configuration or forensic
data is collected. Passive mechanisms collect data about a pro-
tected network before an alert is received, while active mecha-
nisms perform verification in real-time, as a reaction to a re-
ceived alert.

The most important requirement for the alert verification proc-
ess is accuracy. An accurate verification process will signifi-
cantly reduce the number of both false negatives (i.e., alerts
that are marked as non-relevant, when in fact they are) and
false positives (i.e., alerts that are marked as relevant, although
they are not). There are different factors that influence accu-
racy. One factor is the quality of the data that is gathered. An-
other factor is its timeliness. Both factors are critical; it is not
sufficient to have high quality data that is out-of-date, but it is
also unsatisfactory when incorrect data is collected, even
though the data is collected frequently.

Another requirement is to keep the cost of the verification proc-
ess low, where cost is measured along two axes. One axis re-
flects the cost of deploying and maintaining the alert verification
system. The other axis reflects the costs of impact of the verifi-
cation process on the normal operation of the network. This
cost includes whether it necessary to shut down regular net-
work operations to perform alert verification, or whether the
alert verification process has adverse effects on the running
services.

In the following, we describe the different ways to verify the suc-
cess of attacks in more detail, and highlight the corresponding
advantages and disadvantages. Note that the following descrip-
tion presents each approach separately. However, it is possible
to combine techniques to compensate for drawbacks of individ-
ual techniques and to combine their advantages.

2.1 Passive Verification

As mentioned above, passive verification mechanisms depend
on a priori gathered information about the hosts, the network to-
pology, and the installed services. A description of the network
installation is required and can be, for example, specified in a
formal model such as M2D2 [MMDD02] or using hypergraphs
[Vi03].

Given an alert, it is possible to verify whether the target of the
attack exists and whether a (potentially vulnerable) service is
running. For remote attacks, it is also possible to check whether
malicious packets can possibly reach the target, given the net-
work topology and the firewall rule configuration. Also it is pos-
sible to verify whether the target host reassembles the packets
as expected by the intruder (e.g., using the tool by Shankar and
Paxson [SP03]). The real-time network awareness approach
advocated by Marty Roesch [RNA] would also fall into this
class.

One advantage of passive mechanisms is that they do not inter-
fere with the normal operation of the network. In addition, pas-
sive mechanisms do not require additional tests that delay the
notification of administrators or the start of active countermeas-
ures. On the other hand, passive mechanisms have the disad-
vantage that they may rely on outdated data. New services
might have been installed or the firewall rules might have been
changed without updating the knowledge base. This can lead to
attacks that are tagged as non-relevant, even though a vulner-
able target actually exists. Another disadvantage is the limita-
tion of the type of information that can be gathered in advance.
When the signature of an attack is matched against a packet
sent to a vulnerable target, the attack could still fail for a number
of other reasons (e.g., incorrect offset for a buffer overflow ex-
ploit). To increase the confidence in verification results, it is of-
ten required to actively check audit data recorded at the victim
machine or other type of data that may provide conclusive evi-
dence about the effectiveness of an attack.

2.2 Active Verification

Active alert verification mechanisms do not rely on a priori gath-
ered information. Instead, the verification process actively initi-
ates the information gathering process when an alert is re-
ceived. This information-gathering process can check the cur-
rent configuration of the victim host (see Section 2.2.1), or scan
for attack traces (see Section 2.2.2 and Section 2.2.3).



222 PIK 27 (2004) 4

Kruegel, Robertson, Vigna Using Alert Verification to Identify Successful Intrusion Attempts

2.2.1 Active Verification with Remote Access

Mechanisms in this group require that a network connection be
established to the victim machine. One active verification mech-
anism with remote access is based on the use of vulnerability
scanners. A vulnerability scanner is a program specifically de-
signed to search a given target (piece of software, computer,
network, etc.) for weaknesses. The scanner systematically en-
gages the target in an attempt to assess where the target is vul-
nerable to certain known attacks. When an attack has been de-
tected, a scanner can be used to check for the vulnerability that
this attack attempts to exploit. Note that a vulnerability scanner
could also be used in a passive setup. In this case, the full
range of scans would be run in advance (or at regular intervals).

A network connection permits scanning of the attack target and
allows one to assess whether a target service is still responding
or whether it has become unresponsive. It also enables the
alert verification system to check whether unknown ports ac-
cept connections, which could represent evidence that a back
door is installed. In this case, however, care must be taken to
prevent false positives that stem from dynamically allocated
ports. To this end, one could use blacklists of well-known back-
door ports, white-lists that specify port ranges for well-known
applications (e.g., X servers), or service fingerprinting (such as
the one recently added to nmap [Fy]) to detect legitimate appli-
cations. Also, the active verification system can keep a list of
applications that were found running during the last scan and
raise an alert when this list changes.

Active alert verification has the advantage that the information
gathered to verify an attack’s outcome is current. This allows
one to assess the status of the target host and the attacked
service in a more reliable way when compared to passive veri-
fication techniques. In particular, it is possible to recognize
changes at the victim host that might serve as an indication of
an attack.

Although the information is current, however, it might not be
completely accurate. One has to consider that a vulnerability
scanner can also have false positives and false negatives.
When an alert is verified, if the vulnerability scanner determines
that the service is vulnerable when in fact it is not, the alert is
simply reported by the IDS. In this case, the alert is a false pos-
itive (because the service is not vulnerable) and the verification
mechanism has failed. However, the security of the system is
not affected, and without verification, the alert would have been
reported as well. A more significant problem is false negatives.
In this case, a valid alert is suppressed because the vulnerabil-
ity scanner determines that the target is not vulnerable when, in
fact, it is. Although such a scenario is very undesirable, it is not
very likely to occur frequently. The reason is that a vulnerability
scanner actually launches a basic instance of the attack. When
this attack fails, it is very improbable that a more sophisticated
instance succeeds.

Another drawback is the fact that active actions are visible on
the network and it is possible that scanning has an adverse ef-
fect on the hosts of the protected network. For example, port
scanning consumes network bandwidth and resources at the
scanned host. To minimize the impact on an operational net-
work, results can be cached for some time. This is especially
important when an intruder runs scripts that repeat the same
attack with different parameters. Note, however, that caching in-
volves a trade-off between resource usage and accuracy. When
results are cached for too long, the advantage of active verifica-

tion is reduced. As scans are only initiated on a per-alert base,
it is not necessary to run all tests that a vulnerability scanner in-
cludes, but at most a single one for each alert (minus those for
which cached results are available).

In addition, tests run by a vulnerability scanner might crash a
service. More precisely, a vulnerability scanner can perform
tests in a non-intrusive or in an intrusive manner. When running
non-intrusive tests, no vulnerability is actually exploited, but in-
ferred from the type and version of a running service (e.g., by
analyzing the service’s banner information). When running an
intrusive test, the vulnerability is actually exploited. While this
approach delivers more accurate results, it might results in the
crash or disruption of the service being tested. Sometimes, the
crash of a service process can be tolerated, for example, when
the service is implemented using multiple threads (such as
Apache’s thread pool). In this case, the failure of a single thread
does not have a negative impact, because other threads are
still available to serve further requests. In addition, the failed
thread is automatically restarted after a short period of time. On
the other hand, when the crash of a service process interrupts
the whole service, then the corresponding test should be ex-
cluded altogether from the active verification process. This also
helps to prevent attacks that exploit the verification process it-
self. More specifically, an attacker may attempt to trigger an
alert to have the alert verification system check the validity of
the attack and, as a consequence, crash the service. The prob-
lem of selecting the appropriate tests is a result of the trade-off
between the goal of getting accurate results and the goal of
having minimal impact on the operational network. While intru-
sive tests are more reliable in obtaining proper results, the risk
of affecting services in a negative way is greater.

Note that the alert verification mechanism should only be used
to check alerts raised by packets that can possibly reach their
destination. That is, the intrusion detection system (together
with the alert verification system) should be located behind a
firewall. This makes sure that only relevant packets are
scanned for attacks by the IDS and are later checked by the
verification mechanisms. Otherwise, an attacker could poten-
tially bypass the firewall and launch attacks by means of the
alert verification system itself.

The scope of remote scans is also limited, in that the identifica-
tion of some evidence associated with an attack might require
local access to the victim machine. In addition, one has to make
sure that the alerts generated in response to the activity of the
vulnerability scanner are excluded from the correlation process.

2.2.2 Active Verification with Authenticated Access

Mechanisms in this group gather evidence about the result of
an attack using authenticated access to the victim host. The dif-
ference with respect to the previous group of techniques is the
fact that the alert verification system presents authentication
credentials to the target host.

Active verification with authenticated access can be imple-
mented by creating dedicated user accounts with appropriate
privilege settings at the target machines. The alert verification
system can then remotely log in and execute scripts or system
commands. This allows one to monitor the integrity of system
files (e.g., the password file or system-specific binaries) or
check for well-known files that are created by attacks (e.g., ex-
ecutable files left by worms). In addition, programs that retrieve



PIK 27 (2004) 4 223

Using Alert Verification to Identify Successful Intrusion Attempts Kruegel, Robertson, Vigna

interesting forensic data such as open network connections,
open files, or running processes can also be invoked.

The advantage of mechanisms in this group is the access to
high-quality data gathered directly from a target machine. One
downside is the need to configure each machine for authenti-
cated remote access. This might be cumbersome in large net-
work installations or when hosts with several different operating
systems are used. On the other hand, in large networks, such
accounts may already exist for maintenance purposes and can
be also leveraged for gathering forensic evidence. Another
problem with this approach is that the information provided by
general user-space tools might not be as complete and accu-
rate as it is possible with specialized tools. For example, kernel-
level tools may provide much more detailed information with re-
spect to other monitoring tools such as netstat, lsof, or ps.

2.2.3 Active Verification with Dedicated Sensor Support

Mechanisms in this group require, in addition to authenticated
access, special auditing support installed at the target ma-
chines. This auditing support can be provided by operating sys-
tem extensions or special purpose tools, such as host-based in-
trusion detection systems. The difference between using stand-
ard tools and relying on dedicated sensors is that standard
tools are common in most distributions. In addition, dedicated
sensors often need complex configuration.

Dedicated sensors can be used to monitor system calls issued
by user applications. This allows one to check for the spawning
of suspicious processes (e.g., shell invocations) or for accesses
to critical files (e.g., the inetd.conf file). In addition, auditing fa-
cilities can keep a record of malicious activity, while standard
monitoring tools provide only a snapshot of the system. There-
fore, monitoring mechanisms provide the verification system
with access to events that are only visible for a short period of
time, which could be missed by a snapshot.

The advantage of dedicated sensor support is the ability to pro-
vide the most detailed and accurate audit records. The draw-
back is the effort required to install and configure these sen-
sors, and the fact that certain sensors are not available for all
platforms.

2.2.4 General Issues in Active Verification

One issue that affects all active verification mechanisms is the
problem that information is gathered directly from the victim
machine. It can be argued that an attacker can tamper with the
compromised system to eliminate suspicious traces or, at least,
hide her activity from the auditing system. This is particularly
true when the information is gathered remotely (e.g., using a
vulnerability scanner).

There are different approaches to addressing this problem.
One possibility is to operate in a best-effort mode and attempt
to scan the potential victim host as fast as possible after the
alert is received. This, of course, offers a small window of vul-
nerability that can be exploited by the attacker. A more secure
option is to delay packets that have raised an alert until the ver-
ification mechanism has finished. This makes sure that the vic-
tim host has not been compromised by this attack, but it re-
quires an in-line intrusion detection system.

Another option can be used when data is directly gathered on
the victim machines via scripts or dedicated sensors. Here, au-
dit tools should be run at least with privileges that require ad-
ministrative (i.e., root) access to be turned off. By doing this, the
integrity of the sensor is preserved even if the intruder obtains
access or manages to crash a service. In this case, the sensors
operate in a best-effort mode and deliver accurate results as
long as possible. Also, simply disabling auditing is a suspicious
action by itself. A more secure option is the use of a more re-
strictive access control system such as LIDS [LID] or Security-
Enhanced Linux [LS01]. These systems can prevent the admin-
istrator from interfering with the audit facility, so that physical ac-
cess to the machine is required to change or disable security
settings.

3 IMPLEMENTATION

After the general discussion about various alert verification
mechanisms in the previous section, the remainder of the paper
presents the implementation and the evaluation of our verifica-
tion tool. The tool implements active verification mechanisms
with remote access and active verification mechanisms with au-
thenticated access. The system is realized as an extension to
Snort [Sno, Ro99] and can be downloaded at [SAV].

The alert verification tool consists of an addition to Snort’s alert-
processing pipeline. The alerts produced by Snort are queued
for processing by a pool of verification threads. This design al-
lows Snort to continue processing events while alert verification
takes place in the background. An overview of the architecture
of the current implementation is depicted in Fig. 1. In addition,
the Snort rule language was extended to include new keywords
to perform forensic checks at the target hosts.

Because our verification system is implemented as a part of the
Snort sensor, the same process performs both the intrusion de-
tection analysis and the verification process. However, this is
not a requirement of active verification, and it would also be
possible to have a separate verification system that receives

Fig. 1 Verification System Architecture



224 PIK 27 (2004) 4

Kruegel, Robertson, Vigna Using Alert Verification to Identify Successful Intrusion Attempts

alerts from multiple sensors. In this case, the alert verification
tool could be integrated into a centralized alert collection frame-
work.

Note that, because we implemented the verification process as
a module of the Snort sensor, if multiple Snort sensors are used
then multiple verification processes will be executed for attacks
that are detected by more than one sensor. We anticipated that
this would not be a problem, because the performance impact
of the verification tool is low.

3.1 Active Verification with Remote Access

The component that performs active verification with remote
access relies on NASL [Ar02] scripts written for the Nessus
[Nes] vulnerability scanner. More precisely, the component is
implemented as a patch to Snort, which integrates the Nessus
vulnerability scanner into Snort’s core to perform verification of
alerts. Nessus was chosen as a verification mechanism be-
cause of the high quality of its vulnerability checks, its minimal
impact on production networks, and the ease with which it could
be integrated into Snort.

For each alert that is processed by a verification thread, the cor-
responding Common Vulnerabilities and Exposures identifier
[CVE] is extracted and used as an index into Nessus’ collection
of NASL scripts. NASL is the scripting language designed for
the Nessus security scanner. Its aim is to allow one to easily
and quickly write plug-ins to test for security holes.

When an appropriate NASL script is found, the script is exe-
cuted by an embedded NASL interpreter against the victim host
or network identified by the alert. The vulnerable status of the
target is extracted from the NASL interpreter’s output and is
used to flag the detected attack as either successful or unsuc-
cessful. The alert is then queued for output by subsequent alert
plug-ins that have been enabled in Snort. The result of each
verification is also cached for a period of time in order to reduce
load on the network. When no appropriate NASL script is
found, the alert is flagged as undetermined.

3.2 Active Verification with Authenticated Access

The component that is responsible for active verification with
authenticated access performs checks for the “known” outcome
(i.e., evidence) of an attack at the target host. To this end, Snort
rules can be augmented with simple rule extensions that spec-
ify forensic evidence to be looked for on the victim host or net-
work. In the current version, the following extensions have been
implemented.

– It can be checked whether a certain file exists (or does not
exist) in the victim host’s file system. For example, this ex-
tension can be used to verify the files that are often left by
worms in well-known places.

– It can be checked whether a process with a certain name is
running (or not running) on the target machine. For example,
this can be used to detect the crash of a particular network
service or the existence of a suspicious process.

– The content of a file can be checked for the occurrence of a
certain pattern (defined as a regular expression). This can,
for example, be used to assess whether a certain entry is
present in a log file.

Consider the following example of a Snort rule with extensions:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 443
(content:"TERM=xterm"; flow:to_server,established; nocase; 
host_file_exists:/tmp/.uubugtraq;)

This rule augments the standard Snort rule for the Linux Slap-
per worm with a check for the existence of the worm executable
(/tmp/.uubugtraq) on the target host, using the keyword
host_file_exists. If the specified file exists, the attack was suc-
cessful and the corresponding alert is tagged appropriately.

Whenever a Snort rule extended with forensic specifications
triggers, the verification thread consults the Snort configuration
file to check whether the target of the attack has been setup for
authenticated access. If no authenticated access has been pre-
pared, then the alert is tagged as undetermined. Otherwise, the
verification system logs into the target machine and performs
the necessary checks. When all host-based checks are suc-
cessful (i.e., evidence of the attack is found) then the alert is
tagged as successful, otherwise it is tagged as unsuccessful. In
the current system, we have implemented two modules that can
establish remote access to Unix and Windows machines via se-
cure shell and run the appropriate commands there. However,
it is straightforward to add modules that can run the necessary
remote tests via different mechanisms (e.g., Windows Terminal
Services).

3.3 Alert Post-processing

The verification subsystem marks each alert as successful, un-
successful, or undetermined. Post-processing systems (e.g.,
alert correlation engines or system administrator scripts) can
then utilize this additional information when performing their
analysis upon the alert stream generated by verification-ena-
bled Snort sensors.

4 EVALUATION

The current implementation of our alert verification tool has
been evaluated on an experimental test bed with regards to its
effectiveness in reducing Snort’s false alarm rate. Three ma-
chines were present on this test bed:

1. An attacker machine,
2. a target machine (running RedHat Linux 7.0), and
3. a machine with a Snort sensor extended with the alert verifi-

cation tool.

A variety of known vulnerabilities were introduced on the target
machine, and corresponding signatures to detect attacks using
these vulnerabilities were enabled on the sensor machine.

In the first experiment, the alert verification process was run in
“active alert verification with remote access” mode. That is, we
did not configure the target machine such that checks directly at
the host could be performed. The reason was that we wanted to
obtain a baseline for the verification effectiveness in a conserv-
ative setup where only remote access is available.

A wide range of attacks was then run against the target by the
attacker. The attacks were run twice, once with alert verification
enabled and once with alert verification disabled, to compare



PIK 27 (2004) 4 225

Using Alert Verification to Identify Successful Intrusion Attempts Kruegel, Robertson, Vigna

the number of false positives produced by Snort. Attack traffic
was generated from a mix of Nessus runs and publicly available
exploits. The results are shown in Table 1.

Table 1 Alert Verification Effectiveness

As one can see, with Snort running in stand-alone mode, 6659
attacks against the target machine were reported. However, be-
cause either no vulnerable services were actually present on
the target or the targeted services were not vulnerable, most of
these attacks could not have been successful and can thus be
considered non-relevant. Only 24 of the alerts produced by
Snort were true positives, and we arrive at a false positive rate
(or, to be more precise, a non-relevant positive rate) of 99.64%.
With alert verification enabled, however, alerts that relate to at-
tacks that attempted to exploit missing or non-vulnerable serv-
ices were tagged as such. By doing this, the false alarm rate for
Snort with alert verification enabled dropped to 0% and only the
24 actual attacks were reported. Manual inspection of the alert
stream was used to verify that no false positives or non-relevant
alerts were produced.

It is important to note in interpreting these results that Snort and
Nessus are open to generating both true and false positives
and negatives. Thus, the following scenarios are possible:

1. true positive/true positive
In this scenario, the attack is correctly detected, and the
service is correctly reported as vulnerable.

2. true positive/false positive
Here, the attack is correctly detected, and the service is in-
correctly reported as vulnerable.

3. true positive/true negative
Under this scenario, the attack is correctly detected, and
the service is correctly detected as non-vulnerable.

4. true positive/false negative
In this scenario, the attack is correctly detected, but the
service is incorrectly determined to be non-vulnerable.

5. false positive/true positive
With this scenario, benign traffic is misreported as an at-
tack, and the service is reported as vulnerable to the re-
ported attack.

6. false positive/false positive
In this case, benign traffic is misreported as an attack, and
the service is incorrectly reported as vulnerable to the re-
ported attack.

7. false positive/true negative
Under this scenario, benign traffic is misreported as an at-
tack, and the service is correctly determined to be non-vul-
nerable.

8. false positive/false negative
In this scenario, benign traffic is misreported as an attack,
and the service is incorrectly determined to be non-vulner-
able.

9. false negative/true positive
In this case, an attack is not detected by the IDS, but the
service would have been reported as vulnerable by the vul-
nerability scanner.

10. false negative/false negative
Here, an attack goes undetected by the IDS, and the ser-
vice would have been misreported as non-vulnerable by the
vulnerability scanner.

Clearly, from the above list one can see that the ideal scenarios
are 1 and 3, where alert verification either correctly reinforces
confidence in IDS alerts or suppresses incorrect alerts, respec-
tively. Scenarios 2, 5, and 6 correspond to a false positive from
an IDS that is associated with incorrect alert verification. There-
fore, the addition of alert verification does not degrade the ef-
fectiveness of the IDS. Scenarios 9 and 10 correspond to a suc-
cessfully evaded IDS without alert verification; since alert verifi-
cation triggers on IDS alerts, the technique cannot help in these
scenarios. In scenario 7, alert verification is successful in sup-
pressing a false positive that would be otherwise reported by an
IDS. In scenario 8, although it is unfortunate that both compo-
nents fail, the end result is that no successful attack occurs,
and, furthermore, a false positive from the IDS is suppressed.
Therefore, it is not a cause for concern outside of the inaccu-
racy of the IDS and vulnerability scanner. Thus, the only sce-
nario in which alert verification may degrade the effectiveness
of a stand-alone IDS is 4. However, because of the relative
ease of writing correct vulnerability assessment checks when
compared to writing intrusion detection signatures, the proba-
bility of this scenario occurring in the real world is not high. Ad-
ditionally, in our evaluation manual inspection was used to ver-
ify that no scenarios resulting in false negatives were present.

For the second experiment, the verification tool was run in active
mode “with authenticated access”. To this end, the target host
was configured such that the verification system could log into
the machine and check for attack traces locally. Because the
system already removed all non-relevant alerts that were gener-
ated in the first experiment using only remote checks, re-running
the same attacks with the new configuration could not yield any
improvement. Thus, we decided to evaluate the potential of host
checks for alert verification using three Linux worms (Ramen,
Lion, and Slapper). For the experiment, we extended the Snort
rules for these worms with the following host-based checks:

1. Slapper Worm: check for the existence of the file /tmp/
.uubugtraq (copy of worm body)

2. Ramen Worm: check for open port 27374 (used to serve
new worm copies)

3. Lion Worm: check for open port 60008 (root shell port)

Then, both vulnerable and patched versions of the programs
used by the worms to spread were installed at the target ma-
chine (Apache SSL for Slapper, LPRng for Ramen, named for
Lion). All three worms were launched from the attack machine,
once against a set of vulnerable services and once against a
set of patched services. As expected, when Snort was run with-
out verification, every worm attack resulted in an alert. When
using the verification system, however, only successful worm
attacks lead to the existence of corresponding attack traces at
the victim and as a result only relevant alerts were generated.

To gather real-world attack traffic and assess the amount of
alerts that the system is capable of identifying as non-relevant
in a more realistic scenario, a third experiment was conducted.
For this experiment, we deployed two honeypots. One of the
honeypot machines was running a standard RedHat 7.2 Linux
installation; the other one was running an unpatched version of
Microsoft Windows 2000 Server. Both hosts had a considerable
amount of services with known vulnerabilities. The network link
to both honeypots was monitored by Snort-2.0.2, using its com-
plete set of 2625 rules.

During a period of 14 days, Snort reported 164,415 raw alerts
referring to attacks against the RedHat Linux machine and

Alerts True Positives False Positives

Stand-alone 6,659 24 99.64%

Verification enabled 24 24 00.00%



226 PIK 27 (2004) 4

Kruegel, Robertson, Vigna Using Alert Verification to Identify Successful Intrusion Attempts

79,198 raw alerts referring to attacks against the Windows ma-
chine. Among these raw alerts, we noticed a large amount of at-
tacks related to the Slammer and Nachia worms. Also, a large
amount of scan activity against ports commonly used by web
proxy and socks proxy servers was registered. We believe that
spammers that use the proxies as mail relays perform these
scans. Given the raw alerts, the alert verification process was
capable of tagging 161,166 attacks against the Linux host
(98.3%) and 78,785 attacks against the Windows host (99.4%)
as unsuccessful. This tagging was manually verified, and we
concluded that all attacks that have been tagged as unsuccess-
ful actually failed (the manual checks could be performed relia-
bly because most attacks targeted non-existent services). Al-
though a default installation of Snort was used, the numbers
clearly indicate that real-world attack traffic produces many
false or non-relevant positives that can be suppressed using
alert verification.

The results shown above demonstrate that alert verification im-
proves the false positive rate of network intrusion detection im-
plementations. However, the current alert verification imple-
mentation for Snort suffers from several limitations. A first prob-
lem is that the granularity of CVE IDs, which is somewhat
needed by the choice of Nessus as the verification component,
reduces the effectiveness of the tool as a whole. This stems
from the lack of other additional information, such as host archi-
tecture, revision of the vulnerable program, etc., which could re-
sult in the vulnerability testing script reporting the service as
non-vulnerable when in fact it is. It is also worth noting that this
limitation generalizes to the fact that, barring implementation
flaws, active alert verification is only as good as the available
verification scripts, just as the quality of a signature-based IDS
depends on the quality of its signatures.

Another issue is that the classification scheme of vulnerable,
not vulnerable, or undetermined may not be expressive enough
to capture information that is relevant to network security offic-
ers, as members of the focus-ids mailing list [Sec] have pointed
out.

5 RELATED WORK

Several vendors and researchers [Gu02, De03, RNA] have pro-
posed to include vulnerability analysis data when processing
IDS alerts. The idea is to utilize previously gathered information
to reduce the noise of the alert stream produced by intrusion
detection sensors and disambiguate their results. These meth-
ods are all different realizations of passive alert verification
techniques as described in Section 2. In this paper, on the other
hand, an active alert verification mechanism is proposed. We
query the potential victim in response to the sign of an attack to
get the current configuration of the victim that either supports or
refutes the hypothesis that a successful intrusion has occurred.

An important, related analysis process that also takes as input
the alerts produced by intrusion detection systems is alert cor-
relation. Its main task is the aggregation of alerts to provide a
high-level view (i.e., the “big picture”) of malicious activity on the
network. A major problem for correlation systems is false posi-
tives, which can degrade the quality of their results significantly.
It is evident that correlating alerts that refer to failed attacks can
result in the detection of whole attack scenarios that are actu-
ally non-existent.

Previous work [CM02, NCR02] states that alert correlation can
be used both to reduce the total number of alerts and to reduce
the number of false alerts. The latter, namely the reduction of
false alerts, is directly related to our goal. However, the correla-
tion systems mentioned above assume that real attacks trigger
more than a single alert. As a result, the systems can focus on
alert clusters and discard all alerts that have not been corre-
lated. Unfortunately, this assumption has not been substanti-
ated by experimental data or supported by a rigorous discus-
sion. We claim, therefore, that the reduction of false alerts is an
important prerequisite to achieve good correlation results in-
stead of an outcome of the correlation process itself. Also, a re-
cent paper on alert correlation [NX03] mentions that “false
alerts generated by IDSs have a negative impact”. This sup-
ports our assumption that alert verification can act as a pre-
processing step for correlation systems, cleaning the input
stream from spurious alerts and thus improving the result of the
correlation analysis.

6 CONCLUSIONS AND FUTURE WORK

We propose alert verification as a process that is launched in
response to an alert raised by an intrusion detection system to
check whether the corresponding attack has succeeded or not.
When the attack has not succeeded, the alert can be either
suppressed or its priority reduced. This provides an effective
mean to lower the number of false alarms that an administrator
has to deal with. It also improves the results of alert correlation
systems by cleaning their input data from spurious attacks.

We have developed an active verification system based on
Snort and Nessus. As the current implementation stands, it is a
useful tool for reducing the false-alarm rate of Snort. There is,
however, always room for improvement, and in this spirit we
have planned some future directions for further development of
our alert verification tool. One issue to be addressed is the
coarse granularity of CVE IDs, which we plan to tackle by ex-
tending Nessus. Another planned area of development is the in-
tegration of an a priori knowledge base along with passive infor-
mation gathering techniques to supplement the active verifica-
tion techniques.

7 ACKNOWLEDGMENT

We would like to thank Roland Bueschkes for his numerous
comments and the thorough review that helped to improve the
quality of this paper. This research was supported by the U.S.
Army Research Office under agreement DAAD19-01-1-0484
and by the U.S. National Science Foundation under grants
CCR-0209065 and CCR-0238492. The U.S. Government is au-
thorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon.



PIK 27 (2004) 4 227

Using Alert Verification to Identify Successful Intrusion Attempts Kruegel, Robertson, Vigna

REFERENCES

[Ar02] Arboi, M.: The Nessus Attack Scripting Language Reference
Guide. http://www.nessus.org/doc/nasl2_reference.pdf.

[Bug] Vulnerabilities by Bugtraq ID. http://www.securityfocus.com/
bid/bugtraqid/.

[CD03] Curry, D.; Debar, H.: Intrusion Detection Message Exchange
Format: Extensible Markup Language (XML) Document
Type Definition. draft-ietf-idwg-idmef-xml-10.txt. January
2003.

[CM02] Cuppens, F.; Miege, A.: Alert Correlation in a Cooperative In-
trusion Detection Framework. In: Proceedings of the IEEE
Symposium on Security and Privacy. Oakland, CA. May
2002.

[CVE] Common Vulnerabilities and Exposures. http://www.cve.mi-
tre.org/.

[De03] Desai, N.: IDS Correlation of VA Data and IDS Alerts. http://
www.securityfocus.com/infocus/1708. June 2003.

[Fy] Fyodor: Nmap: The Network Mapper. http://www.inse-
cure.org/nmap/.

[Gu02] Gula, R.: Correlating IDS Alerts with Vulnerability Informa-
tion. Technical Report. Tenable Network Security. December
2002.

[GWC98] Ghosh, A.; Wanken, J.; Charron, F.: Detecting Anomalous
and Unknown Intrusions Against Programs. In: Proceedings
of the Annual Computer Security Application Conference.
pages 259-267. Scottsdale, AZ. December 1998.

[IS04] ISS: Realsecure 10/100. http://www.iss.net/.

[JV94] Javitz, H.S.; Valdes, A.: The NIDES Statistical Component
Description and Justification. Technical Report. SRI Interna-
tional. Menlo Park, CA. March 1994.

[KRL97] Ko, C.; Ruschitzka, M.; Levitt, K.: Execution Monitoring of
Security-Critical Programs in Distributed Systems: A Speci-
fication-based Approach. In: Proceedings of the IEEE Sym-
posium on Security and Privacy. pages 175-187. May 1997.

[LID] Linux Intrusion Detection System. http://www.lids.org/.

[LS01] Loscocco, P.; Smalley, S.: Integrating Flexible Support for
Security Policies into the Linux Operating System. In: Free-
nix Track of Usenix Annual Technical Conference. 2001.

[MMDD02] Morin, B.; Me, L.; Debar, H.; Ducasse, M.: M2D2: A Formal
Data Model for IDS Alert Correlation. In: Proceedings of the
International Symposium on the Recent Advances in Intru-
sion Detection. pages 115-137. Zurich, Switzerland. Octo-
ber 2002.

[NCR02] Ning, P.; Cui, Y.; Reeves, D.: Constructing Attack Scenarios
through Correlation of Intrusion Alerts. In: Proceedings of

the ACM Conference on Computer and Communications
Security. pages 245-254. Washington, D.C. November 2002.

[Nes] Nessus Vulnerability Scanner. http://www.nessus.org/.

[NFR01] NFR Security: Overview of NFR Network Intrusion Detection
System. February 2001.

[NP99] Neumann, P.; Porras, P.: Experience with EMERALD to
Date. In: First USENIX Workshop on Intrusion Detection and
Network Monitoring. pages 73-80. Santa Clara, CA. April
1999.

[NX03] Ning, P.; Xu, D.: Learning Attack Strategies from Intrusion
Alerts. In: Proceedings of the ACM Conference on Compu-
ter and Communications. Washington, DC. October 2003.

[Pa98] Paxson, V.: Bro: A System for Detecting Network Intruders in
Real-Time. In: Proceedings of the 7th USENIX Security
Symposium. San Antonio, TX. January 1998.

[RNA] RNA – Real-time Network Awareness. http://www.source-
fire.com/technology/whitepapers.html.

[Ro99] Roesch, M.: Snort – Lightweight Intrusion Detection for Net-
works. In: Proceedings of the USENIX LISA Conference.
November 1999.

[SAV] Snort Alert Verification. http://www.cs.ucsb.edu/~wkr/
projects/ids_alert_verification/.

[Sec] SecurityFocus Mailing Lists Archive. http://www.securityfo-
cus.com/archive.

[Sno] Snort – The Open Source Network Intrusion Detection Sys-
tem. http://www.snort.org.

[SP03] Shankar, U.; Paxson, V.: Active Mapping: Resisting NIDS
Evasion Without Altering Traffic. In: Proceedings of the IEEE
Symposium on Security and Privacy. 2003.

[UJP03] Undercoffer, J.; Joshi, A.; Pinkston, J.: Modeling Computer
Attacks: An Ontology for Intrusion Detection. In: 6th Interna-
tional Symposium on Recent Advances in Intrusion Detec-
tion. 2003.

[Vi03] Vigna, G.: A Topological Characterization of TCP/IP Secu-
rity. In: Proceedings of the 12th International Symposium of
Formal Methods Europe. LNCS 2805. Springer-Verlag. Sep-
tember 2003.

[VVK03] Vigna, G.; Valeur, F.; Kemmerer, R.A.: Designing and Imple-
menting a Family of Intrusion Detection Systems. In: Pro-
ceedings of the European Software Engineering Conference
and ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering. Helsinki, Finland. September 2003.

[WFP99] Warrender, C.; Forrest, S.; Pearlmutter, B.: Detecting intru-
sions using system calls: Alternative data models. In: IEEE
Symposium on Security and Privacy. pages 133-145. 1999.


