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ABSTRACT

Detecting and Preventing Attacks Against Web Applications

by

William Kim Robertson

The World Wide Web has evolved from a system for serving an interconnected set of

static documents to what is now a powerful, versatile, and largely democratic platform

for application delivery and information dissemination. Unfortunately, with the web’s

explosive growth in power and popularity has come a concomitant increase in both

the number and impact of web application-related security incidents. The magnitude

of the problem has prompted much interest within the security community towards

researching mechanisms that can mitigate this threat. To this end, intrusion detection

systems have been proposed as a potential means of identifying and preventing the

successful exploitation of web application vulnerabilities.

The current state-of-the-art, however, has failed to deliver on the promise of intrusion

detection. Misuse-based detection systems are unable to generalize to previously un-

known attacks for which no signatures exist. In the context of the web, this is especially

problematic in light of the wide proliferation of unique, custom-written web applica-
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tions. On the other hand, anomaly-based intrusion detection systems seem well-suited

for detecting attacks against web applications. Existing anomaly detection techniques,

however, have heretofore proven unfeasible due to several factors: unacceptably high

false positive rates, susceptibility to evasion, an inability to adapt to changes in moni-

tored applications, and a lack of explanatory power.

In this dissertation, I present WEBANOMALY, an advanced black-box anomaly detection

system that accurately detects attacks against web applications with low performance

overhead. WEBANOMALY addresses several of the aforementioned fundamental chal-

lenges to anomaly detection using a combination of novel techniques. In particular,

the relatively high rate of false positives and lack of explanatory power is ameliorated

using anomaly signatures, a technique for clustering related anomalies and classifying

the type of attack they represent. The problem of local training data scarcity is ad-

dressed through the use of global knowledge bases of well-trained profiles collected

from other web applications. Changes in web application behavior over time, known

as concept drift, are addressed by treating the web application itself as an oracle of le-

gitimate change. Finally, a novel framework for developing web applications that are

secure by construction against many common classes of attacks is presented.
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W. ROBERTSON DETECTION AND PREVENTION OF WEB-BASED ATTACKS

Chapter 1

Introduction

The World Wide Web has evolved from its humble beginnings at CERN in 1991 to

become the predominant service of the contemporary Internet.1 With a currently es-

timated size of approximately 50 billion unique pages as indexed by the major search

engines [21], what was originally a system for serving an interconnected set of static

documents is now a powerful, versatile, and largely democratic platform for applica-

tion delivery and information dissemination. In addition to hosting static documents,

the web now enables entities, from individuals to governments to multi-national cor-

porations, to publish complex services and applications to an international audience of

staggering size; one survey currently places the number of web users in excess of 1.4

billion, or approximately 21% of the world population [86]. The World Wide Web has

connected the world in a way scarcely imaginable a generation ago, and is, one could

argue, fundamentally responsible for a radical, ongoing reshaping of society, the full

1Indeed, in the eyes of many, the Internet and the World Wide Web are synonymous.

1



W. ROBERTSON DETECTION AND PREVENTION OF WEB-BASED ATTACKS

Year Web-related Total Proportion

1999 235 1,573 14.94%
2000 334 1,233 27.09%
2001 502 1,564 32.10%
2002 995 2,419 41.13%
2003 521 1,566 33.27%
2004 1,071 2,762 38.78%
2005 2,464 4,878 50.51%
2006 4,581 7,238 63.29%
2007 3,614 6,726 53.73%
2008 3,915 6,816 57.44%
2009 725 1,808 40.10%

1,740 4,339

Total 18,957 38,583 49.13%
19,612 41,114

Table 1.1: Web-related vulnerabilities per year [120]. Projected figures for 2009 are in italics.

ramifications of which are still not completely understood.

That which can be used for good can also be turned to evil, however. With the web’s

explosive growth in power and popularity has come a concomitant rise in both the num-

ber and magnitude of web-related security incidents. Table 1.1 presents a summary of

web-related vulnerabilities contained in the Common Vulnerabilities and Exposures

(CVE) database. The data contained therein clearly indicates a dramatic increase in

both the number of reported web-related vulnerabilities as well as the proportion of

all reported vulnerabilities. Though an apparent downward trend in web-related re-

ports was observed in the years following 2006, one must consider that the number of

reported vulnerabilities is not necessarily correlated to the aggregate severity of said

vulnerabilities.

2



W. ROBERTSON DETECTION AND PREVENTION OF WEB-BASED ATTACKS

Organization Records Data stolen

TJX 94,000,000 Customer records
CardSystems, Inc. 40,000,000 Credit card records
Auction.co.kr 18,000,000 Customer records, including credit card numbers
TD Ameritrade 6,300,000 Customer records
Chilean government 6,000,000 Personal records, credit card numbers
Data Processors Intl. 5,000,000 Credit card records
UCLA 800,000 Personal records, including SSNs
Oak Ridge National Lab 12,000 Records of visiting researchers, including SSNs

Table 1.2: Sample of known data breaches [92, 93].

A major factor in the increasing scrutiny web-based applications have received from

attackers is their popularity. Popular web applications can easily receive millions of

unique visitors per day. Therefore, if an attacker is able to inject malicious code into

such an application, such that the malicious code attempts to exploit client-side vul-

nerabilities in browsers or browser extensions, an attacker can infect a large population

of end-points in a relatively short amount of time with code of their choosing. This

malicious code, once installed on a client machine, can perform a variety of nefarious

tasks, such as mining the client for sensitive data, or joining the client machine into a

botnet [118, 117].

In addition, unauthorized disclosures of confidential data due to vulnerabilities in web-

based applications or services are occurring on an increasingly massive and unprece-

dented scale. Neither government nor industry have proven immune to data breaches, as

Table 1.2 indicates. The aggregate statistics on confidentiality breaches are even more

troubling, however. Table 1.3 presents an estimate of the number of personal records

released due to unauthorized information disclosures per year. In particular, the number

of network-related incidents and individual records exposed versus the total number of
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Year Incidents (Net.) Incidents (Total) Proportion Records (Net.) Records (Total) Proportion

2000 5 5 100.00% 371,400 371,400 100.00%
2001 9 9 100.00% 157,250 157,250 100.00%
2002 3 3 100.00% 4,960 4,960 100.00%
2003 7 12 58.33% 5,620,300 6,405,300 87.74%
2004 11 22 50.00% 873,900 32,073,900 2.72%
2005 72 150 48.00% 43,483,986 56,116,124 77.49%
2006 137 514 26.65% 9,351,267 50,990,225 18.34%
2007 141 475 29.68% 10,2437,582 164,471,350 62.28%
2008 179 603 29.68% 19,565,359 83,983,070 23.30%
2009 36 170 21.18% 388,987 5,117,359 7.60%

86 408 933,569 12,281,661

Total 600 1,963 30.57% 182,254,991 399,690,938 45.60%
650 2,201 182,799,573 406,855,240

Table 1.3: Data loss incidents per year [93]. Projected figures for 2009 are in italics. We note
that the apparent discontinuity between 2002 and 2003 is a direct result of stricter
regulations mandating the disclosure of privacy breaches enacted by the State of
California in 2003.

incidents and records exposed is shown. Though the proportion of network-related dis-

closures trends downward over time due to an increase in physical attacks, a significant

portion of incidents were network-related, and a majority of records were lost due to

network vulnerabilities. In addition, this data only pertains to records disclosed from

entities based in a handful of countries where strict regulations regarding data disclo-

sure are in force. Soberingly, no records exist for the majority of countries under more

relaxed regulatory schemes.

The economic and personal impact on the victims of data breaches is difficult to esti-

mate; the only certainty is that it is immense. The industrial and government sectors

have begun to respond by mandating stricter regulatory policies regarding the handling

of sensitive data. Yet, despite 43 US states having enacted legislation requiring cus-

tomers to be notified of data breaches, researchers have found no statistically significant

reduction in the number of breaches as a result [108].
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One particularly influential example of industry self-regulation is that of the Payment

Card Industry Data Security Standard (PCI DSS) [98]. Currently at version 1.2, the PCI

DSS is a set of twelve requirements for the handling of credit card information that is

jointly published by the major credit card companies. In order to process credit card in-

formation for these companies, both merchants and credit card processors above a cer-

tain size threshold must periodically demonstrate compliance with these requirements.

The PCI DSS groups its requirements into six categories: Build and Maintain a Secure

Network, Protect Cardholder Data, Maintain a Vulnerability Management Program,

Implement Strong Access Control Measures, Regularly Monitor and Test Networks,

and Maintain an Information Security Policy. Of particular interest in the context of

this dissertation are Requirements 6.6 and 11.4, which states the following:

6.6 For public-facing web applications, address new threats and vulner-

abilities on an ongoing basis and ensure these applications are pro-

tected against known attacks by either of the following methods:

• Reviewing public-facing web applications via manual or auto-

mated application vulnerability security assessment tools or meth-

ods, at least annually and after any changes

• Installing a web-application firewall in front of public-facing web

applications

11.4 Use intrusion-detection systems, and/or intrusion-prevention systems

to monitor all traffic in the cardholder data environment and alert

personnel to suspected compromises. Keep all intrusion-detection

and prevention engines up-to-date.
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Though well intentioned, as we shall argue in Section 1.2, this is easier said than done.

Regardless, it is clear that, given the magnitude of the problem, there is much interest

in both the security community as well as stakeholders in mitigation of the threats to

web-based applications. To that end, the first step is naturally to identify the factors that

contribute to the existing web security crisis.

1.1 The state of web security

The web suffers from a number of novel threats in addition to the traditional classes

of software vulnerabilities. To place these in context, this section will first present a

high-level outline of the architecture of the web as it exists today.

1.1.1 The architecture of the web

The web is a client-server network architecture in which web clients and web servers

exchange information using the Hypertext Transfer Protocol (HTTP) over TCP/IP. A

web client may be a web browser such as Mozilla Firefox or Microsoft Internet Ex-

plorer, or an automated “spider” that traverses the web to, for instance, build a search

engine index. A web server hosts a set of web resources organized as a tree, each of

which is identified by at least one path from the web server’s directory root; popular

examples include the Apache HTTP Daemon or Microsoft Internet Information Ser-

vices. One or more affiliated web servers comprise a web site. Web resources may be

static text files, Hypertext Markup Language (HTML) documents, media files such as
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images or music, client-side code, dynamic scripts comprising a web application that

may output any of the above, or any of a number of other possibilities.

A typical HTTP session proceeds as follows. A web client requests a resource from a

web server by issuing one of a number of HTTP client commands. The request specifies

the path to the resource, various information contained in request headers, and a set

of parameters in key-value format. The web server processes the request and returns

a response containing a status code indicating the result of the request. The request

may be successful, in which case a response body is returned containing the requested

resource. Alternatively, the server may direct the browser to issue a subsequent request

to another resource or indicate that an error has occurred. Other resources associated

with the original resource, such as embedded images or client-side scripts, may be

subsequently requested, not necessarily from the same web server. For full details,

please refer to the HTTP/1.1 specification [33]. A sample HTTP request and response

pair sent between a web client and server is shown in Figure 1.1.

HTTP cookies

Web servers may store small amounts of data, called cookies, at individual web clients.2

A cookie is stored by sending a special HTTP response header to the client containing

a cookie identifier, value, and a DNS domain specification, possibly with other optional

information. Subsequent requests issued to web servers that match the domain specifi-

cation will include a copy of the cookie unless the cookie expires or is explicitly unset

2Cookies are not included in the HTTP/1.1 standard, but rather evolved out of an informal specifica-
tion produced by Netscape [90].
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Figure 1.1: HTTP request and response pair.

by the web server. Since HTTP is a stateless protocol, cookies are typically used by

web applications to track requests from an individual web client in order to implement

an HTTP session. Cookies also form the basis of most web authentication schemes

currently in use.

Client-side scripting

Client-side scripting languages such as JavaScript and, later, ECMAScript, gradually

became popular as the complexity of the web increased. Executing within the web

browser, client-side scripts allow web developers to interact with the Document Ob-

ject Model (DOM), performing actions such as automatically redirecting the browser

to new resources, accessing the browser history, opening new windows, or validating

HTML form field content prior to submitting a request to the server. With the inclusion

of the XmlHttpRequest API and the popularization of Asynchronous JavaScript and
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XML (AJAX), client-side scripting has assumed a central role in the development of

modern web applications. Using this API, client-side scripts can issue requests that

asynchronously update an HTML document within the web browser without initiating

a full HTTP resource request cycle to refresh the entire document. This has signifi-

cantly enhanced the appearance and functionality of web applications, to the point that

AJAX-enabled applications have since been collectively referred to as “Web 2.0.”

Rich Internet applications

Another significant component of the modern web is rich Internet applications (RIA),

such as Adobe Flash or Microsoft Silverlight. In the context of the web, RIA frame-

works are used to implement complex client-side applications that display advertise-

ments, stream video, or entirely supplant the HTML document, providing a media-rich,

highly interactive environment that could not otherwise be realized. These frameworks

typically are developed in modern, high-level languages; for instance, Flash applica-

tions are written in a variant of ECMAScript called ActionScript, and Silverlight ap-

plications can be written in any language supported by the .NET runtime. These appli-

cations are compiled down to bytecode, optionally packaged with media, and executed

within a virtual machine runtime available as a plugin for most web browsers.

Security extensions

As HTTP has matured, several extensions intended to bolster its security have been

adopted. HTTPS is a combination of HTTP transmitted over a connection that is en-
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crypted at the network stream level using the Secure Sockets Layer (SSL) or Transport

Layer Security (TLS) standards. Designed to provide end-to-end security to prevent in-

termediary attackers from observing HTTP communication in transit, it suffers from the

drawback that it does not prevent the exploitation of vulnerabilities at either the client

or the server, where the vast majority of web attacks occur. In addition, several client

authentication schemes have been introduced, but these have also proven ineffective at

preventing most classes of web attacks.

Perhaps the most important, and controversial, HTTP security feature is the same-origin

policy. First introduced by the Netscape Navigator 2.0 browser, the same-origin policy

dictates that client-side scripts executing within the browser may not access resources

from other origins, where “origin” is defined to be a DNS domain name, protocol,

and network port triplet. This coarse-grained security policy is intended to ensure that

only client-side code that has been issued by the web site administrators or developers

should execute. This policy has attracted much criticism from developers who find it

too restrictive. Yet, bypassing the same-origin policy is the basis of virtually all web

client vulnerability classes.3

Therefore, several proposals to increase the granularity of the same-origin policy have

been introduced. For instance, Flash implements an extension to the same-origin policy

with its crossdomain.xml specification. These files enable a web server administrator

to explicitly declare a set of trusted domains, as opposed to the implicity policy spec-

ified by same-origin. Each of these trusted domains can serve Flash applications to

clients that can access resources located on that server. The client-side Flash runtime
3Thus, one questions whether basing script execution authorizion on the DNS is the correct abstrac-

tion.
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is responsible for enforcing the declared policy. crossdomain.xml has the effect of

relaxing the same-origin policy, granting greater flexibility to Flash applications. Con-

cerns have been raised, however, over the difficulty of accurately modeling complex

trust relationships. Also, crossdomain.xml is specific to Flash applications and does

not mitigate threats posed by other types of client-side code.

Other refinements of the same-origin policy have recently been proposed, most notably

Mozilla’s Site Security Policy (SSP). SSP is intended to address several vulnerability

classes arising from the same-origin policy by allowing fine-grained policies to be de-

fined in HTTP headers. These policies enable web server administrators to specify a

whitelist of domains a browser should allow as legitimate sources of client-side scripts

associated with a specific resource, as well as control how a web server handles cross-

site requests. Such proposals are at an early stage at the time of writing, however, and

it is unclear what their ultimate effectiveness will be.

Unfortunately, existing web security mechanisms have proven inadequate to the task

of protecting web clients and servers from exploitation. As a consequence, the web is

plagued not only by the traditional set of vulnerability classes, but, in addition, a novel

set of attacks which are not as well understood and for which defense mechanisms are

not as advanced. The following sections outline several significant classes of threats.

1.1.2 Web attacks

Attacks against the same-origin policy comprise the majority of novel vulnerability

classes in the context of web security. Accordingly, it is essential to recognize the un-
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derlying trust assumptions implied by the same-origin policy. These trust assumptions

are:

1. The client trusts that resources located within the same domain as the resource

originally requested are legitimate.

2. The server trusts that requests from an authenticated client with an active session

are legitimate.

The following enumeration of vulnerability classes will elaborate on how abuse of these

trust assumptions enables successful exploitation.

Cross-site scripting (XSS)

Cross-site scripting (XSS) attacks are among the most prevalent attacks against web

applications [94], and manifest themselves in several ways. A first-order, or reflected,

XSS attack proceeds as follows. The attacker coerces a web client to submit a specially-

crafted HTTP request to a vulnerable web server, where a malicious client-side script

is directly embedded into the request. The response that is returned to the victim client

contains the client-side code specified by the attacker, therefore causing the victim

to execute malicious code with the privileges of the web server. This code typically

attempts to perform an action such as submitting a session authentication token in the

form of a cookie to another web server under the control of the attacker.

Another variation on this theme is a second-order, or stored, XSS attack. In this sce-

nario, the malicious script, or a reference to a malicious script, is directly submitted as
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Figure 1.2: Example of a cross-site scripting attack. Here, an attacker has injected a malicious
script into a vulnerable web application. The script attempts to exploit a browser
vulnerability when executed by a victim.

part of a request by the attacker. The script is then stored on the site (e.g., in a back-end

database) by the web server, under the assumption that the stored script will later be in-

cluded as part of a response to a victim. When the web content including the malicious

script is served to a victim, the malicious code is executed as in the first-order case. An

overview of a stored XSS attack is depicted in Figure 1.2.

A third, and less frequent, type of this attack is DOM-based XSS. This attack differs

significantly from reflected or stored XSS in that it is possible to execute without in-

jecting client-side code into the web application at all – that is, it can be executed com-

pletely locally within the victim’s web browser. The attack relies upon the existence of

client-side code served by the web browser that dynamically updates a document within

the web browser through the use of DOM functions such as document.write(). For
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instance, an attacker may coerce a victim into accessing a URL with an anchor com-

ponent that contains a malicious <script/> reference. When the browser processes

this URL, it does not send the anchor to the server, as that information is only required

locally. Then, a script embedded into the document returned by the web server dynam-

ically updates the document, inadvertently inserting the malicious <script/> node.

This node then downloads and executes a malicious script that performs the rest of the

attack.

Central to this class of attack is the exploitation of the trust relationship between the

web client and server. The client trusts the server not to include malicious code in

response to its requests. Due, however, to the failure on the part of the web server

to prevent injection of a malicious script by an attacker, this trust assumption can be

violated, and the same-origin policy bypassed.

Cross-site request forgery (CSRF)

Cross-site request forgery (CSRF) attacks, in contrast, target the second trust assump-

tion implied by the same-origin policy. CSRF attacks operate as follows. The attacker

first coerces a web client to request a resource from a web server under the control of

the attacker. Unbeknownst to the victim, the resource that is returned then induces the

victim to submit a malicious request to another web server by, for example, including

an HTML link or form with that web server as a target. The victim is assumed to have

an active HTTP session with the target web server. Hence, the result is an authenticated

request to the target web server that can perform arbitrary actions under the control of

the attacker. Examples of common actions include modifying the authentication cre-
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Figure 1.3: Example of a cross-site request forgery attack. Here, an attacker has coerced a
victim into submitting a funds transfer from the victim to an account controlled by
the attacker.

dentials of the victim to enable the attacker to impersonate the victim, or perhaps, in

the case of a banking web site, to transfer funds from the victim’s account to an account

controlled by the attacker. An illustration of a CSRF attack is presented in Figure 1.3.

CSRF attacks exploit the second trust assumption underlying the same-origin policy,

namely that web servers trust authenticated clients to issue legitimate requests. Since,

however, an authenticated web client can be deceived by an attacker into issuing mali-

cious requests, the same-origin policy can again be bypassed.

HTTP header injection

HTTP header injection is a vulnerability class that encompasses several variations; ex-

amples include HTTP response splitting and HTTP request smuggling. Regardless,

each individual attack exploits the same vector, by injecting malicious data into the
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Figure 1.4: Example of a SQL injection attack. Here, an attacker has injected a query that
results in the unauthorized disclosure of all user records from the database.

HTTP headers of a request or response. As an example, we consider a second-order

HTTP response splitting attack. Here, an attacker first submits a request containing a

malicious payload to a web server. Similar to a second-order XSS attack, it is assumed

that the payload will later be returned to a victim client as part of a subsequent re-

sponse. The difference, however, is that instead of being located in the response body,

the malicious payload will be located in a response header. The payload can then inject

an arbitrary HTTP response under the control of the attacker. This is accomplished by

terminating the current header with a “\r\n” character sequence, followed by a set of

HTTP headers and arbitrary response body.

In the case of the HTTP response splitting attack described above, it is the trust placed in

the web server by the client that is violated. Other HTTP header injection attacks, how-

ever, exploit the trust placed in the web client by the server; HTTP request smuggling

attacks against intermediary devices such as HTTP proxy servers are one instance.
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SQL injection

SQL injection is an exception to this attack enumeration in that it is not a class of attacks

that is specific to the web. Nevertheless, due to the widespread usage of databases

as a backing store for web applications, SQL injection has comprised a significant

proportion of web application vulnerabilities [94]. As such, it deserves mention.

To understand the attack vector, we first describe the Structured Query Language (SQL).

SQL is used to submit queries to a database, where each query may perform one or

more operations. Common operations include INSERT, to insert data into the database;

UPDATE, to update existing data; SELECT, to retrieve data from the database; and DELETE,

to remove data from the database. A query may require arguments that specify the data

to be inserted, updated, returned, or removed; these arguments are typically delimited

by single quotes.

SQL injection can occur when data submitted to a web server is used as an argument to

a SQL query without proper sanitization. In the simplest type of injection, an argument

to a query is allowed to contain the argument delimiter. The effect is to terminate the

argument, allowing the attacker to specify the rest of the query. In the worst case, this

can lead to enabling an attacker to execute arbitrary SQL queries against the database.

Clearly, this can allow an attacker to acquire unauthorized access to data. Since, how-

ever, SQL databases often store authentication credentials, SQL injection attacks are

often used to bypass a web application’s authentication scheme by, for instance, adding

a new user account with a known password.
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Traditional attacks

In addition to the aforementioned attacks, web clients and servers have also proven

susceptible to more traditional types of vulnerabilities. For completeness, we briefly

enumerate them in the following.

Both web clients and web servers contain vulnerabilities allowing for successful control

flow hijacking attacks. This class of attack generically refers to any attack that allows an

attacker to assume control over a program. Well-known examples of this include stack-

based buffer overflows that overwrite a saved instruction pointer or otherwise control

stack frames; heap-based buffer overflows that enable an attacker-controlled memory

overwrite; format string vulnerabilities, enabling an attacker to enumerate memory and

perform memory overwrites; and generic pointer overwrites, enabling an attacker to

control the destination of a memory write or the target of an indirect function call. Vul-

nerabilities that allow this class of attack are extremely serious in that an attacker can

perform arbitrary actions with the privilege level of the exploited program. Common

actions include the installation of malware, or the exposure of confidential data.

Web clients and servers have also been vulnerable to command injection attacks. In

particular, web applications that execute external programs during request processing

without properly sanitizing any client-supplied arguments have proven to be a popular

attack vector. Similar to the previous case, these vulnerabilities are considered to be

serious, as arbitrary actions can be performed.

A final example of the traditional attacks that have also manifested themselves in the

web context is path traversal. Path traversal attacks typically exploit a vulnerability in a
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web server or application that allows an attacker to specify a request for a resource that

should not be served. Examples of this attack include escaping a web server document

root by accessing its parent directory, or supplying to a web application an absolute

path for a file to download instead of an expected relative path.

1.1.3 Web “culture”

In addition to the more technical considerations of web-based vulnerabilities, several

other factors that can best be described as cultural characteristics of the web have con-

tributed to its insecurity. First, it is essential to recognize that the presence of vulner-

abilities in software alone is insufficient to prompt the enormous number of security

incidents that has been observed. Instead, web-based services and applications are

mainly targeted due to their status as arbiters of extensive amounts of sensitive in-

formation. As was previously demonstrated, criminals can, by exploiting web-based

vulnerabilities, acquire vast numbers of personal records, including credit card num-

bers and social security numbers. This information, in turn, can then be directly used to

commit traditional acts of fraud or identity theft. Alternatively, this information can be

sold to other criminal organizations, forming one part of an underground economy that

has become prodigious in its scale. The availability of sensitive data is, however, fun-

damentally a consequence of the predominance of the web as a platform for collecting

and disseminating information.

Another contributing factor to the insecurity of the web is the relatively informal de-

sign methodology. One aspect of this phenomenon is the lack of any real centralized
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system architect responsible for its design. This has had positive consequences: anyone

with the requisite technical sophistication may contribute to its design, and, as a result,

the web has evolved in power and flexibility more quickly and unexpectedly than any-

one had imagined. On the other hand, without a visionary “benevolent dictator,” new

web technologies or development methodologies have often relegated security issues

as afterthoughts, or failed to consider them at all.

A characteristic example is that of the same-origin policy and, for lack of a better term,

“Web 2.0.” Exemplified by the use of AJAX and so-called “mashups,” Web 2.0 has

resulted in highly composite web pages composed of resources from a multitude of

disparate domains. Many of the constituent parts of a page are not under the control of

any single entity and may include malicious content that, due to the same-origin policy,

is considered trusted. Clearly, the lack of security-aware design that is endemic to the

web has resulted in systems with poorly understood security properties that were only

recognized after the systems were already deployed.

Yet another cause of web vulnerabilities has been the unfortunate prominence of inse-

cure development tools. While any development tool can be used to create insecure

software, it remains true that some tools are naturally more conducive to this than oth-

ers. As a case study, we shall briefly consider PHP.4 A server-side scripting language,

PHP has become very popular as an easy, powerful language for creating dynamic web

sites. Regrettably, however, PHP has also become known for the ease with which inse-

cure code can be produced. Besides a number of implementation-level vulnerabilities

that have been discovered, PHP is notorious for incorporating language features that are

4PHP was originally an acronym for Personal Home Page, but is now recursively defined as PHP:
Hypertext Processor.
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either prone to exploitation or difficult to use in a secure fashion. Well-known examples

include the register globals5 and magic quotes gpc6 mis-features, among others.

A final cause of the insecurity of the web is the lingering perception that developing web

applications is easy. Exacerbated by the availability of development environments like

PHP, this perception has resulted in a large pool of practicing web developers unversed

in basic security principles. In conjunction with the significant amount of custom, web

site-specific development that is typically performed when writing a web application,

it is therefore unsurprising that vulnerable software is produced.

In summary, web-based vulnerabilities are pervasive for many reasons, and exploita-

tion of these vulnerabilities has resulted in massive economic damage to individuals,

governments, and industry. As a consequence, web-based vulnerabilities pose a critical

threat. Thus, it is imperative that security mechanisms be developed to mitigate this

threat.
5register globals is a configuration flag that, when enabled, causes the PHP interpreter to auto-

matically insert variables corresponding to various HTTP request parameters into the global namespace.
This has the effect of potentially enabling an attacker to influence control flow or manipulate data through
request parameter manipulation.

6magic quotes gpc is another configuration flag for PHP. It controls whether or not the PHP inter-
preter will automatically sanitize all input variables to a script in preparation for their use in a database
query, and is intended to prevent SQL injection. Since a given script is independent of the config-
uration setting, however, one of two misconfigurations can occur. First, a script may assume that
magic quotes gpc is enabled when it is not, in which case no protection against SQL injection is
afforded. Second, a script may erroneously assume that magic quotes gpc is disabled. In this case, the
script may simply cease to function correctly at all, since any input strings containing certain characters
will be silently modified by the PHP interpreter.
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1.2 Mitigating the threat

Strategies for dealing with security vulnerabilities can be broadly classified into four

categories: avoidance, detection, prevention, and recovery. The following section in-

troduces each approach and discusses their relative advantages and disadvantages.

1.2.1 Avoidance

The goal of avoidance is twofold. First, avoidance strategies attempt to prevent secu-

rity vulnerabilities from being introduced into software during the development stage

through the usage of secure coding and design techniques. Second, avoidance strategies

preemptively identify and remove vulnerabilities from software before it is deployed in

a security-critical situation.

Secure development practices

The area of secure development practices can be considered as a subset of the traditional

field of software engineering, with a specific focus on security. As the field is broad, a

full overview is elided; instead, a sampling of some well-known principles is provided.

One important theme of secure development practices is that of incorporating security

planning into the development process from an early stage. This may take the form of

specifying security policies to be enforced, or designing the architecture of the system

to reduce the impact of vulnerabilities. Clearly, if security features are not carefully

22



W. ROBERTSON DETECTION AND PREVENTION OF WEB-BASED ATTACKS

considered during the design stage but are rather “bolted-on” after the fact, the likeli-

hood that oversights or unforeseen consequences will occur is greater. Indeed, history

is littered with spectacular security failures that can be directly attributed to the failure

to apply this principle.

Another fundamental maxim of secure design is the principle of least privilege, which

states that a subject should be given only those privileges necessary to correctly perform

its task. Furthermore, if a subject only requires a limited set of privileges for certain

tasks, the subject should either only acquire those privileges when necessary or it should

be split into separate privileged and non-privileged subjects (“privilege separation”).

A common implementation-level practice is to avoid the usage of APIs known to be

conducive to introducing security vulnerabilities. This often arises when a function, or

set of functions, is difficult or impossible to use in a safe manner. Perhaps the canonical

example is that of the strcpy() function; since the programmer cannot supply an upper

bound on the number of characters copied, it is only safe to use when the maximum

length of the source buffer is known and can be verified to always be less in length

than that of the destination. Since this is often not the case, this function has, in all

likelihood, been responsible for more buffer overflow vulnerabilities than any other

single cause in history.

A final example of secure design principles is that of avoiding “security through obscu-

rity.” The name originally refers to the practice of basing the security of a cryptographic

algorithm around the secrecy of how the algorithm works, although the principle has

since been generalized. This principle is generally interpreted as an observation that it

is preferable to rely upon a well-designed security architecture rather than ignorance of
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its insecurity.

Unfortunately, regardless of the mindfulness of software designers and developers, vul-

nerable software continues to be produced. Therefore, it is desirable to provide some

level of quality assurance by identifying security vulnerabilities in software during or

after development.

Identifying security vulnerabilities

In practice, identifying security vulnerabilities generally encompasses a plethora of

techniques for the analysis of software, each of which may be classified along several

axes: static or dynamic7, white-box or black-box, and manual or automated.

Static analysis. Static analysis is performed offline on either source code or directly

on an executable image. Because of the offline nature of static analysis, such techniques

are by necessity considered white-box, where white-box refers to the ability of the

technique to directly analyze the code or dynamic state of the software under test. This

is as opposed to black-box approaches, which are restricted to providing inputs to the

software and observing the external results; as the name suggests, these techniques

approach the software under test as a “black-box.”

On the other hand, static analysis may be considered as either manual or automated.

Manual static analysis generally refers to the practice of code auditing, in which skilled

7Note that we define the terms static and dynamic with respect to vulnerability analysis in a wider
sense than is generally used. In much of the literature, however, static and dynamic analysis are synony-
mous with static and dynamic code analysis.
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security analysts examine the source code or executable image of the software under

test in order to identify potential vulnerabilities. Code auditing has emerged as a partic-

ularly effective means of discovering software vulnerabilities, and is widely practiced

by both industry and various government agencies. Nevertheless, the efficacy of man-

ual techniques relies directly on the competency of the security analysts themselves,

and the fallibility of these analysts as well as the increasing complexity of software that

must be analyzed has prompted investigation into powerful automated techniques for

discovering software vulnerabilities.

Automated static analysis operates by building a model of the execution of the soft-

ware under test. This is typically performed by translating a representation of the soft-

ware into an intermediate format suitable for a model-checker or SAT8 solver such as

SPIN [45], BLAST [42], SLAM [5], or MiniSAT [24], which then completes the anal-

ysis. Because it is generally prohibitive to consider every possible execution state of a

program, some level of abstraction is induced to maintain the tractability of the analy-

sis. This abstraction results in a sound and conservative analysis. The results are sound

in the sense that they are accurate regardless of the input to the program. On the other

hand, because of the abstracted nature of the model, the results are conservative in that

they reflect weaker properties than may actually hold in practice. Despite this lack of

precision, however, a major advantage of automated static analysis techniques is their

potential to provide full coverage of all possible executions of a program.

Examples of well-known automated academic static analyzers include MOPS [13],

MC [3], EXE/STP [12], and Saturn [136]. Additionally, despite the difficulties of mod-

8SAT is a shorthand reference to the Boolean satisfiability problem.
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eling programs written in scripting languages popularly used for web application de-

velopment, several static analyzers have been developed for PHP, including Pixy [54]

and the tool presented in [137]. The viability of automated static analysis is further

exemplified by the existence of commercial tools such as Coverity Prevent [18] and

Fortify SCA [36], both of which are widely used.

Dynamic analysis. Dynamic analysis operates by observing the software under test

as it executes. During execution, if an input causes or could potentially cause the pro-

gram to enter a state that would violate a defined security policy, the analyzer reports

the failure of the software to prevent itself from entering such a state as a vulnerability.

Similar to static techniques, dynamic analysis approaches can be classified as either

white-box or black-box. In the former case, the concrete execution states for the soft-

ware under test with a given input are directly known, either by dynamically tracing the

target program in a native environment or by leveraging a virtualized environment. In

the latter case, a test driver supplies a variety of inputs to the software under test and

observes the external results of the processing of these inputs. If the program exhibits

behavior that is consistent with a security violation, a vulnerability is reported. Such

test drivers are commonly known as “fuzzers.”

Examples of both manual and automated dynamic analysis techniques exist. Manual

dynamic analysis is more generally termed “penetration testing,” in which teams of

skilled security analysts attempt to “penetrate” the security defenses of a computer

network or system.9 In the case of software vulnerability analysis, this takes the form

of demonstrating security vulnerabilities by attempting to bypass checks on program

9Alternatively, “red-teaming” or “tiger-teaming.”
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input that enforce a defined security policy.

Dynamic analysis, in contrast to static techniques, is considered precise in that no ab-

straction is introduced into the analysis. Instead, at a minimum, the input that caused

the program to violate a defined security policy is directly known; in the case of white-

box dynamic analysis, the exact set of program checks that allowed the program to

enter the security-critical state are known. The major disadvantage, however, of dy-

namic analysis is its reliance on the quality of the set of inputs used. Inputs that are not

representative of real-world usage of the software under test result in a lack of testing

coverage of the software and, as a consequence, significantly degraded usefulness of

the results. Regardless, dynamic analysis has gained in popularity due to the relative

efficiency and precision of the approach.

Examples of automated dynamic analyzers include Nessus [119], Valgrind [111], Anu-

bis [25], and Daikon [28].

The various avoidance techniques described above have proven effective at discover-

ing software vulnerabilities, and are generally prescribed as elements of secure soft-

ware development best practices. In particular, automated static and dynamic analysis

techniques have made dramatic strides in the past decade, and continue to improve.

Regardless, a common drawback to all avoidance approaches is that of completeness.

Specifically, no analysis technique can guarantee the absence of security vulnerabilities

in any piece of software. Fundamentally, this is a consequence of being reducible to

the problem of program understanding, which is known to be NP-complete. Therefore,

while avoidance of software vulnerabilities is an important component of an overall se-

curity strategy, it must be complemented with other approaches to mitigating software
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Figure 1.5: Generic architecture of an intrusion detection system.

security threats.

1.2.2 Detection

Detection mechanisms, as opposed to avoidance strategies, monitor deployed software

in an attempt to identify when a system is under attack or has been compromised by an

attacker. A system that employs such mechanisms is generally known as an intrusion

detection system (IDS). Much work has centered around the design and evaluation

of intrusion detection systems, and over time a standard architecture has emerged, to

which almost all intrusion detection systems adhere.

Intrusion detection systems can generally be decomposed into three basic components,

as depicted in Figure 1.5. First, an event collector component is responsible for mon-

itoring and packaging events from a specific domain. This component may perform

event normalization, feature extraction, or other preprocessing, but no analysis is usu-

ally performed at this level. Once these events have been prepared, they are passed to

the analysis engine, the second component of an IDS. The analysis engine implements

the actual detection methodology, which differs from system to system. However the

analysis is performed, its fundamental purpose is to differentiate malicious traffic from
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Attack occured
p n Total

Attack detected p′ True positive False positive P ′

n′ False negative True negative N ′

Total P N

Table 1.4: Confusion matrix representing possible IDS decision outcomes.

normal traffic. Finally, intrusion detection systems contain a third component to ex-

ecute responses to detected attacks. Responses may range from simply logging the

occurrence of the attack to more complex actions, such as directly attempting to block

the attack from succeeding or dynamically updating a separate firewall in order to block

further occurrences of the attack. The types of responses an IDS can perform are, how-

ever, largely orthogonal to its main distinguishing characteristics: monitored domains

and detection methodology.

Intrusion detection methodologies are primarily evaluated with respect to their abil-

ity to distinguish attacks from normal behavior. In particular, IDS designers attempt

to both maximize the true positive rate and minimize the false positive rate of a pro-

posed technique. A confusion matrix presenting the possible outcomes of an individual

classification performed by an IDS is presented in Table 1.4. In this table, the events

corresponding to normal and malicious behavior are represented by n and p, while clas-

sifications on the part of an IDS of the events as normal and malicious are represented

by n′ and p′, respectively. The true positive rate (TPR) of an IDS is calculated as pp′

pp′+pn′ ,

while the false positive rate (FPR) of an IDS is determined by p′n
p′n+n′n

.

A popular method to evaluate intrusion detection systems is the Receiver Operating

Characteristic (ROC) curve, an example of which is shown in Figure 1.6. ROC curves
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Figure 1.6: Example ROC curves.

were introduced during World War II in the field of signal detection for evaluating radar

systems, and have since been applied to the evaluation of intrusion detection method-

ologies. ROC curves plot the true positive rate of an IDS as a function of its false pos-

itive rate, and are used to provide a graphical representation of the tradeoff associated

with increasing the true positive rate, or sensitivity, of a detection methodology. (0, 0)

corresponds to classifying all events as normal, while (1, 1) represents the classification

of all events as malicious. Points along f (x) = x represent a lack of discrimination,

or a random guessing strategy. Points above this line represent positive discriminatory

power, while points below the line represent negative discriminatory power.10 IDS de-

10Note that such a system does in effect possess positive discriminatory power, achieved simply by
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signers typically strive for plots approaching (0, 1) – that is, the upper-left corner of

the plot. A ROC curve for an individual IDS is used to determine an optimal operat-

ing point given a specified tolerance to false positives. Additionally, several systems

may be compared on a single plot; for example, in Figure 1.6, IDS A exhibits higher

sensitivity for a given false positive rate than IDS B.

Detection methodologies

There exist two main detection methodologies employed by intrusion detection sys-

tems: misuse detection and anomaly detection. Misuse detection systems contain a set

of signatures, each of which describes a manifestation of an attack. A misuse-based

IDS monitors streams of events and attempts to match a sequence of events to these

signatures. If a match is observed, the IDS considers an attack to have occurred. In

this sense, a misuse detection system implements a blacklist policy or negative model,

where certain event sequences are considered attacks, and the rest are considered be-

nign.

Anomaly detection systems, on the other hand, employ the dual strategy. Instead of

modeling evidence of malicious behavior, anomaly-based systems model the normal

behavior of events from the monitored domains. If a sequence of events deviates sig-

nificantly from these models, the IDS considers those events to be evidence of an at-

tack. Consequently, anomaly detection systems implement a whitelist policy, or posi-

tive model.

reversing each of its decisions.
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Model construction

Intrusion detection systems can be further classified according to whether their models

are specified or automatically generated. Misuse signatures are predominantly man-

ually specified by skilled security analysts, usually in response to the proliferation of

known exploits. In contrast, anomaly detection models have traditionally been automat-

ically generated from training samples using algorithms borrowed from the machine

learning community. This dichotomy does not always hold, however, since counter-

examples for each methodology do exist. Recent systems that attempt to automati-

cally generate misuse signatures for Internet worms have been proposed, and several

anomaly-based systems have been developed that rely on manual specification of be-

nign behavior.

Due to their blacklist policy as well as the precision with which misuse signatures can

model malicious behavior, misuse-based systems typically exhibit a relatively low false

positive rate when compared to anomaly detection systems. On the other hand, misuse-

based systems are also notoriously bad at generalizing to new attacks; at best, such

systems can, in some cases, detect variations on known attacks. In contrast, anomaly-

based systems are able to detect previously unknown, or “0-day,” attacks, as the detec-

tion methodology is independent of the precise manifestation of the attack. The main

drawback of anomaly detection systems, however, is their relatively high false positive

rate, which has hindered their wider deployment in real-world situations.
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Monitoring domains

Finally, intrusion detection systems can be categorized according to the domains they

monitor. Typically, these are some subset of the network, host, or application domains.

Network-based intrusion detection systems monitor events at various levels of the net-

work stack, from link layer frames to network streams. These systems have the advan-

tage that a single instance can detect attacks against a large number of endpoints, al-

though implementing more resource-intensive detection algorithms in high-bandwidth

environments has proven problematic. Additionally, network-based systems are more

prone to evasion attacks; due to the decoupled nature of their analysis from individ-

ual endpoints, models of the state of an endpoint can easily become desynchronized

from the true state of the endpoint. Also, the increasing prevalence of network-level

encryption poses problems of both scalability and management for network-based IDS.

Host-based intrusion detection systems instead monitor events generated by the oper-

ating system, which are predominantly system call executions or system library calls.

Host-based approaches are generally harder to evade than network-based approaches,

since a host-based IDS’s view of the monitored system is much more tightly coupled.

Regardless, evasion attacks against such systems have been demonstrated. In addition,

host-based systems can incur a much higher deployment cost than network-based IDS,

since instances must be installed, configured, and maintained on each individual end-

point.

Application-based intrusion detection systems monitor events from within individual

applications running on an endpoint. These systems monitor application-specific events
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or, alternatively, are built into the application itself. An application-based IDS is there-

fore extremely tightly coupled to the state of the application, and as such is potentially

the most difficult to evade. Similar to host-based intrusion approaches, however, man-

agement costs are higher than in the case of network-based intrusion techniques. Also,

concerns have been raised about the prospects for system performance degradation or

denial of service due to the inline architecture of certain systems.

As intrusion detection is the main focus of this dissertation, a thorough discussion of

individual intrusion detection systems will be deferred until Chapter 2.

1.2.3 Prevention

Prevention mechanisms share some degree of overlap with detection mechanisms in

that they are both intended to identify the exploitation of a vulnerability. Once an attack

has been identified, however, prevention mechanisms additionally endeavor to thwart

the success of the attack. In this respect, prevention mechanisms can often be viewed as

an intrusion detection mechanism that has been extended with a preventative response;

the so-called intrusion prevention system (IPS) is an example of this phenomenon.

Such a view, however, is not necessarily correct. For instance, prevention mechanisms

are often integral to the system itself. To illustrate, consider the StackGuard buffer

overflow prevention system [19]. Due to the integration of the system into the C com-

piler, it is impossible to perform stack-based buffer overflow exploits. This prevention

mechanism therefore is an explicit consequence of the design of the system.
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Prevention mechanisms are also often confused with avoidance mechanisms. Here,

the distinguishing characteristic is when attacks are prevented. Avoidance mechanisms

prevent the exploitation of vulnerabilities before they occur, while prevention mecha-

nisms block attacks in an online manner. To illustrate, consider the Java programming

language and virtual machine runtime. Due to the design of the language and bytecode

verifier, it is impossible to perform arbitrary memory overwrites; this security property

is verified before code is allowed to execute. In contrast, StackGuard prevents stack

overflows at runtime.

Another distinguishing characteristic is that, as also illustrated in the previous exam-

ple, prevention mechanisms are often targeted towards a specific class of vulnerability.

To wit, consider the succession of prevention mechanisms intended to prevent stack-

based or heap-based buffer overflows. Each of these systems does nothing to address,

for instance, format string vulnerabilities, function pointer overwrites, or brainwashing

attacks, and furthermore they cannot do so without extending the system itself. This

specificity of design and intent is indicative of prevention mechanisms.

Prevention mechanisms generally possess the advantage that, due to their narrow fo-

cus, they are highly effective in thwarting a single class of vulnerabilities. Nonetheless,

prevention mechanisms do suffer from several drawbacks. In particular, prevention

mechanisms generally require a well-defined security policy to enforce. For instance,

a succinct policy for a stack-based buffer overflow prevention system might be “never

allow a user-initiated memory write to overwrite a system pointer.” For a system login

program, the policy might be “never allow a user to access the system without pro-

viding the correct password.” These policies are simple, distinct specifications, and
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consequently their enforcement is straightforward. As security policies become more

complex or nebulous in their specification, however, it becomes accordingly more dif-

ficult or, in some cases, impossible to efficiently and effectively enforce the policies.

Another disadvantage of prevention mechanisms is that they can be cumbersome to

deploy and, as a result, are less effective than they would otherwise be. Stack-based

buffer overflow prevention systems, for example, are well-known for causing seem-

ingly arbitrary program crashes due to previously unknown buffer overflows in those

programs. In many of these situations, instead of auditing the source code to remove

the bug, these systems were simply turned off. A similar phenomenon was observed

for systems intended to prevent the execution of code on the stack or heap. Certain

programs, such as just-in-time (JIT) compilers, legitimately require the ability to exe-

cute outside of the code segment. For such systems, as in the previous case, non-exec

prevention mechanisms had to be disabled.

Finally, prevention mechanisms themselves can be exploited by an attacker to cause

a denial of service. This follows from the observation that the actions performed by

a prevention mechanism in response to a detected attack are generally severe. For

instance, a buffer overflow protection system may be forced to terminate a process in

which an overflow has occurred, since critical data controlling application behavior

and control flow might have been corrupted. Similarly, an IPS may insert blocking

rules into a firewall in response to a detected attack. If an attacker is able to spoof their

identity such that the ensuing response is targeted towards others, a denial of service

may be created. The potential for this situation to arise has had real consequences. For

instance, many businesses have been reticent to adopt intrusion prevention systems due
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to the loss of revenue associated with service downtime.

Examples of prevention mechanisms abound. There have been many systems to pre-

vent stack-based buffer overflows, including StackGuard [19] and SSP [30]. Similar

systems have been proposed to protect heap data structures [104]. Both OpenBSD [95]

and PaX [96] incorporate a number of prevention mechanisms; examples such as non-

executable page protections and address space layout randomization have proven in-

fluential. Prevention mechanisms also exist for mitigating XSS [127] and CSRF [53]

vulnerabilities.

1.2.4 Recovery

Recovery strategies approach the problem of threat mitigation from a different per-

spective than that of prevention strategies. Rather than attempt to thwart the success

of an attack, recovery mechanisms allow systems to continue operating in the face of

successful exploitation. There are two main classes of recovery systems: those that dis-

continue service while recovery is performed, and those that allow service to continue

during recovery, albeit in a potentially degraded capacity.

Recovery mechanisms that result in an interruption in service overlap considerably

with the traditional mechanisms of disaster recovery. The canonical example is the

quintessential system administration task of creating regular backups of critical data.

In the event of the corruption or destruction of data, a known good snapshot can be

restored within a short time period. Because recovery generally involves identifying

and removing the vulnerabilities that allowed the system to be compromised in the
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first place, offline recovery mechanisms can also include forensic analysis of the target

system.

Online recovery mechanisms generally borrow ideas from the area of fault tolerance,

and are less commonplace than offline methods due to several factors. First, recovery

mechanisms are usually inextricably bound to a given system or domain to be pro-

tected, since the act of recovery requires an intimate knowledge of the internals of the

protected resource. Second, in many cases it is difficult to guarantee that the recovery

will always succeed. Nevertheless, research continues to grapple with online recov-

ery. Examples include the selective rollback of malicious database transactions [2], and

recording snapshots of program states that can be restored in the event of an otherwise

fatal system error [112].

A crucial disadvantage of recovery mechanisms is that they do not protect against unau-

thorized data disclosure; once data has been exposed, confidentiality cannot be restored.

In the context of web applications, confidentiality of personal records is the overriding

concern, and as a consequence recovery mechanisms are an ineffective means of threat

mitigation.

1.3 Anomaly-based intrusion detection for web appli-

cations

Each of the mitigation strategies discussed in Section 1.2 has both advantages and dis-

advantages as they apply to the context of web security. In accordance with the security
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principle of defense in depth, it is desirable that mechanisms embodying each approach

be deployed to counter the threats to web applications. Nevertheless, in this section we

will examine the suitability of each approach with respect to mitigating threats to web

applications, and justify the approach we have adopted for this dissertation.

Avoidance mechanisms are clearly advantageous in that they offer the potential to iden-

tify the presence of vulnerabilities before they can be exploited. The impossibility of

doing so with absolute certainty, however, forces one to conclude that other strategies

must be employed in order to address those vulnerabilities that will inevitably remain

undiscovered.

Prevention mechanisms, then, would seem to be an ideal strategy to compose with that

of avoidance. The inclusion of systems to prevent, with a high degree of confidence,

the exploitation of known web application vulnerabilities would theoretically provide

maximal coverage against current threats. Several problems remain, however. First, any

such protection mechanisms would only be guaranteed to be effective against known

attacks; novel classes of vulnerabilities would not necessarily be addressed. Further-

more, protection mechanisms typically incur a high deployment cost that may prove

unfeasible in practice. A protection mechanism that required, for instance, the modifi-

cation of all web clients and servers in order to guarantee protection would be likely to

face considerable obstacles in terms of adoption.

Recovery mechanisms may prove useful in terms of service availability and data in-

tegrity. Unfortunately, since many attacks against web applications are motivated by

the desire to gain illicit access to sensitive data, recovery mechanisms would seem ill-

suited to addressing threats to data confidentiality.
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Detection mechanisms, therefore, are likely to offer the most effective mitigation strat-

egy against both known and unknown threats to web applications. In this regard,

anomaly-based intrusion detection systems are the most promising class of detection

mechanisms. Furthermore, the relatively low deployment cost of intrusion detection,

when compared to other strategies, increases the likelihood that effective detection sys-

tems will be adopted in practice.

Though both industry and government have recognized the need for advanced web ap-

plication intrusion detection systems, many open challenges remain to be solved before

such systems can be effectively deployed in the real world. First, previous anomaly

detection systems have exhibited unacceptably high false positive rates, limiting the

effectiveness of their reporting. Anomaly detection systems are also highly dependent

on the quality of the training data. Noisy training data that inadvertently contain at-

tack samples can render an anomaly detection system useless. Additionally, a lack of

insufficient training samples to build accurate models can also result in a degradation

of the ability of an anomaly detection system to correctly recognize attacks. Anom-

aly detection systems are also currently unable to recognize when the underlying web

application has changed; in the machine learning community, this is referred to as the

problem of concept drift. Accordingly, they are unable to distinguish between anoma-

lies due to attacks and those due to inaccurate models. Anomaly detection algorithms

historically have also exhibited high overhead, preventing their deployment in high-

bandwidth environments. Finally, anomaly detection systems exhibit poor explanatory

power regarding the attacks they detect. While misuse-based systems, due to their pre-

cision, are able to report the exact type of attack detected with a high degree of certainty,

anomaly-based systems have heretofore been restricted to reporting that a statistically
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significant deviation from a model has been identified.

In this dissertation, I make the following contributions to the area of web security.

• I present the design and implementation of WEBANOMALY, an advanced black-

box anomaly detection system that accurately detects attacks against web appli-

cations with low performance overhead.

• I propose and evaluate anomaly signatures, a novel method for clustering anoma-

lies in order to reduce the effective false positive rate of anomaly detection sys-

tems.

• I apply attack classification techniques to clustered anomalies in order to improve

the explanatory power of anomaly detection systems.

• I introduce the problem of incomplete training data for web application anomaly

detection systems due to the frequent non-uniformity of resource invocations. I

propose and evaluate an effective technique to compensate for a local scarcity of

training data by exploiting global similarities in web application anomaly models.

• I introduce the problem of web application concept drift, or legitimate changes

in the behavior of web applications over time. I propose and evaluate the use

of response modeling techniques to distinguish between anomalies caused by

legitimate changes and those caused by malicious behavior, allowing an anomaly

detection system to selectively re-train models without being vulnerable to model

poisoning attacks.
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• I present the design and implementation of a web application development frame-

work that treats both web documents and database queries as strongly typed alge-

braic data types instead of unstructured sequences of bytes, automatically enforc-

ing a separation between the structure and content of these objects. Due to the

typing system imposed by the framework, applications are secure against major

classes of attacks by construction.

The remainder of this dissertation is organized as follows. Chapter 2 presents an

overview of related work in the field of intrusion detection and web security. Chap-

ter 3 introduces the design of WEBANOMALY. Chapter 4 dicusses a technique to reduce

the effective false positive rate of anomaly detectors, and a technique to increase their

explanatory power. The problem of training data scarcity and how WEBANOMALY

addresses this issue is discussed in Chapter 5. In Chapter 6, techniques for detecting

legitimate changes in web applications and updating models to reflect those changes are

presented. Chapter 7 presents a web application development framework that results

in web applications that are secure by construction against popular classes of attacks.

Finally, Chapter 8 draws conclusions and proposes areas for future work.
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Chapter 2

Related Work

The field of intrusion detection is broad, and encompasses a substantial body of re-

search into the design and evaluation of effective intrusion detection methodologies.

The majority of this chapter will discuss significant contributions to the field, with the

principal intent being to place the system described in this dissertation in the context of

past work.

The standard taxonomy for intrusion detection systems involves classifying each sys-

tem according to several distinguishing characteristics: detection methodology, either

misuse-based or anomaly based; detection domain, either the network, the host, ap-

plication, or some combination; and whether detection models are manually specified

or automatically generated. We begin by discussing the foundations of research into

intrusion detection.
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2.1 Foundations of intrusion detection

The modern understanding of intrusion detection was introduced in a seminal paper by

Denning [22]. The author proposes a general framework for detecting attacks against

computer systems by modeling normal behavior patterns generated by users of the sys-

tem. The implementation of this framework, called IDES, accomplishes this by ana-

lyzing system audit records generated by user logins, program executions, or file and

device accesses. From these audit records, three metrics are derived: an event counter,

which records the number of events of a certain type that occur during a given time

interval; an interval timer, which records the length of time between two related events;

and a resource measure, which records the utilization of a given resource for each event.

Once these metrics have been calculated, a number of statistical models are generated

in order to characterize the normal behavior of these metrics. These models include

the operational model, which compares a metric against fixed thresholds; the mean and

standard deviation model, which uses Chebyshev’s inequality to establish loose bounds

on the variance in the mean and standard deviation of a metric; the multivariate model,

which, as its name suggests, extends the previous model to multiple random variables;

the Markov process model, which treats an event counter as a state variable and char-

acterizes the probability of the metric transitioning from one state to another; and the

time series model, which characterizes the order and intervals between event counter

or resource measures. These models are then composed in various ways into profiles,

which are used to characterize the normality of different aspects of system behavior.

Therefore, IDES implements what would today be termed a host-based anomaly de-
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tection system.1 Subsequent systems extended the anomaly-based model to include a

rule-based component; for examples, see [79] or [49].

In [41], Helman and Liepins present a theoretical foundation for anomaly-based in-

trusion detection. The authors model event streams as a pair of stationary stochastic

processes: the legitimate process N , and the malicious process M . Using this charac-

terization, the authors provide formal bounds on the effectiveness of intrusion detection

systems as a function of the difference of the densities of N and M over the space of

all possible events. With perfect information about both N and M , the bound is shown

to be achievable. Due, however, to the more realistic scenario where only imperfect

knowledge of either process exists, the authors show that detection accuracy is typi-

cally far from this bound.

One of the first systems to propose misuse-based techniques as the sole means of detec-

tion was STAT [47]. STAT was designed to perform stateful analysis of event streams,

modeling multi-step attacks as a directed graph of states and transitions collectively

called attack scenarios. Scenario states are considered abstract representations of the

state of the monitored system, and scenario transitions represent possible changes in

the state of the monitored system. Each scenario has a single initial state and a set of

final states, each of which corresponds to a successful attack. At system initialization,

a single scenario instance, or unique instantiation of the scenario, is created at the ini-

tial state. Each scenario instance contains information about an attack in progress. As

events are input into the system, the analysis engine attempts to match outgoing transi-

tions at any state associated with a scenario instance. If the event type and an optional

1Interestingly, the author also anticipates the misuse-based detection methodology, and dismisses the
idea as “too complex” and “unable to cope with intrusions that exploit deficiencies that are not expected.”
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transition assertion both match, the transition is taken. Depending on the type of transi-

tion, the scenario instance may move completely to the new state; the scenario instance

may clone itself, with one instance remaining at the current state and the other moving

to the new state; or, the scenario instance may destroy itself. Each scenario state or

transition may also have an associated set of actions that are executed when a scenario

instance enters a state or follows a transition; these are typically used to record relevant

information about an attack, or to execute a response to an attack. The original work

presented and evaluated USTAT, a system for monitoring Solaris Basic Security Mod-

ule (BSM) audit records. Later work, however, generalized the system, abstracting the

attack specification language and analysis engine from domain-specific event providers

and custom response modules. The resulting framework was successfully applied to

the network domain [123] and application domain [125], among others.

2.2 Misuse-based detection

In [69], Kumar and Spafford describe a system for misuse-based detection that bears a

striking resemblance to STAT. In this work, the authors propose the use of Colored Petri

Nets (CPN) to model multi-step attacks. In this system, each signature is represented by

a CPN that has one or more start states, a single final state corresponding to a successful

attack, and a set of transitions between these states, each of which may have an optional

guard assertion. Current stages of an attack are represented by tokens, each of which

contain a set of variables encoding information about the attack. If a token reaches the

final state of a CPN, the corresponding attack is considered to have been matched. As
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opposed to the previous work, however, matching is relatively expensive; in fact, it is

exponential in the size of the input. Furthermore, no evaluation of the system has been

presented to date.

Lindqvist and Porras summarize the design of the misuse-based detection component

of the various SRI intrusion detection systems in [75]. The system, called P-BEST, is

a forward-chaining expert system that encodes signatures as a set of facts. As events

are processed by the system, an inference engine attempts to match events to existing

facts in order to derive new facts through successive applications of the logical rule of

modus ponens.2 If an observed sequence of events causes a fact corresponding to a

successful attack to be derived, an alert is generated. A custom language for describing

fact-based signatures can be compiled into C language source code, from which either

stand-alone executables or libraries can be produced. The system itself is independent

of the detection domain, having been applied to BSM audit logs as well as network

traffic.

Snort [107] is a network-based IDS that has enjoyed considerable popularity due to its

relative simplicity and open-source development model. Snort signatures are written

in a custom rule language targeted entirely at expressing constraints on network packet

headers and payloads. In its most basic form, Snort is stateless in that it considers

each network packet independently. Limited support for stateful analysis exists, how-

ever, through a number of preprocessors for reassembling network streams or detecting

portscans. Additionally, a simple mechanism for chaining rules exists.

In [97], Paxson describes the Bro network-based IDS. Bro was designed to perform

2Modus ponens states that (p ∧ (p → q)) → q.
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real-time intrusion detection for high-speed links, and was written to resist attacks

against the system itself, albeit under the assumption that attacks will only originate

from outside a trusted enclave. The system utilizes a custom rule language to express

its attack signatures, and furthermore is extensible to allow for service-specific analy-

sis. Bro was successfully deployed at LBNL, and has since become more widely used

as an alternative to Snort.

Almgren and Lindqvist propose in [1] one of the first application-based intrusion de-

tection systems, where the detection system is integrated into the monitored applica-

tion itself. The system described was implemented as a module for the Apache web

server, though the approach is independent of the application. This technique has sev-

eral advantages over more traditional network-based or host-based intrusion detection.

Crucially, desynchronization attacks against the monitored application are essentially

impossible, as the IDS has a complete view of the state of the application as it processes

events. Also, the IDS is able to inspect events that would otherwise be encrypted, since

it has access to the data in unencrypted form. An additional benefit is that the IDS need

not concern itself with events unrelated to the monitored application, as in the case of

network-based IDS. Finally, attack response mechanisms can take advantage of exist-

ing error handlers within the application itself instead of more traditional and inelegant

methods such as connection termination or blocking.

Application-based intrusion detection does have some drawbacks, however. Due to

the tight integration, detection overhead may impact the performance of the monitored

application. Also, application-based IDS development does not scale as well as other

approaches, since each application to be monitored requires some development effort
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to integrate the IDS. Additionally, a successful attack against the monitored application

may allow for the possibility for the attacker to disable the IDS. Finally, deployment

costs are higher due to the overhead of managing a number of detection systems as

opposed to, for instance, one NIDS. Regardless, this approach has proven viable; the

system described in [1] was later reimplemented under the guise of a web application

firewall as mod security [102].

2.3 Anomaly-based detection

Forrest et al. frame the problem of intrusion detection as as an immune system that

distinguishes between the self, or normal behavior, and the other, or malicious activ-

ity [35]. The authors propose the automated learning of sequences of system calls

to accomplish this; therefore, the system described is, at heart, a host-based anomaly

detection system. During the training phase, sequences of 5, 6, and 11 system call in-

vocations are observed from executing processes. Only the type of the system call is

recorded, while the arguments, return value, and other information is discarded. Dur-

ing the detection phase, a number of deviations above a certain threshold from the

established database of system call sequences observed during the training phase are

reported as attacks. The metric used in this work was the Hamming distance, although

others are possible. This approach was later extended in [44], and prompted further

research into system call-based anomaly detection.

In [133], Warrender et al. explore alternate approaches to analyzing sequences of sys-

tem calls. In this paper, they compare several methods of analysis, including sequences
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of system calls, relative frequencies of system call sequences, rule induction, and Hid-

den Markov Models (HMM). Their analysis concludes that, although HMMs exhibited

the best detection accuracy, their high computational cost outweighed their benefit in

light of the comparable accuracy of more lightweight methods.

Wagner and Dean describe a system for learning normal sequences of system calls

statically from application source code in [129]. The system they propose uses static

analysis techniques to build a profile of legitimate system call sequences for each ap-

plication to be protected. Three methods for building such profiles are described: call

graphs, which can be represented as non-deterministic finite automatons; abstract stack

modeling, the output of which can be represented as a non-deterministic pushdown au-

tomaton (NDPDA); and digraphs of k-sequences of system calls. Both system call types

as well as those system call arguments that can be statically determined are considered.

The resulting system demonstrated promising accuracy, but the approach suffers from

the drawback that static analysis cannot model application behavior with sufficient pre-

cision to avoid the possibility of generating false positives. Also, both the NDFA and

NDPDA models exhibited exponential running time in several cases. Finally, this paper

is notable for introducing the mimicry attack against anomaly detection systems, where

an attacker can evade detection by mimicking a legitimate sequence of system calls in

the course of the attack.

Sekar et al. [110] apply the automaton construction approach introduced by [129] to a

dynamic context. In this work, sequences of system call traces are observed by tracing

an application from another user-level process. System call types themselves are dis-

covered by analyzing the stack of the monitored application. The resulting automaton
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is then used during the detection phase to identify deviations, which are reported as

attacks. Because the technique is dynamic, the resulting automaton is precise, because

the state of the monitored application is known. On the other hand, the technique suf-

fers from the usual drawback that the coverage of the learned automaton is dependent

on the inputs to the monitored application during the learning phase.

Mutz et al. propose two improvements to system call-based anomaly detection in [88].

First, in addition to modeling normal sequences of system calls, the arguments to these

system calls are also considered. The use of system call arguments to enhance the dis-

criminatory power of system call anomaly detection is motivated by the observation that

advanced attacks against applications may only manifest themselves in argument val-

ues. Additionally, the authors evaluate the use of Bayesian networks to capture condi-

tional dependencies between individual model score outputs that are not well-modeled

by simple weighted sum score combinations. The resulting system demonstrated sig-

nificant improvements in detection capability over previous systems for certain classes

of attacks.

In [62], Ko et al. describe what they term a specification-based approach to intrusion

detection. In their system, legitimate sequences of execution events are manually speci-

fied using a specialized grammar. This grammar is capable of capturing temporal secu-

rity properties that may exist in a parallel or distributed environment. Deviations from

these specifications of normal behavior are considered to be evidence of malicious be-

havior. In the context of previous work, the specification-based approach can be consid-

ered an example of anomaly-based intrusion detection where the models are manually

specified. Indeed, Ko later applied machine learning techniques, specifically Inductive
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Logic Programming (ILP), to derive models of normal program behavior [61].

Ghosh et al. propose the use of neural networks for intrusion detection in [38]. During

the training phase, a combination of external inputs and internal state of monitored ap-

plications is provided to a backpropagation network. During the detection phase, the

resulting neural network was used to classify input events as either normal or anoma-

lous. The system described, however, was only evaluated on a single application with

synthetic training data. Also, concerns over the scalability of this approach have been

raised, as backpropagation networks are expensive to train.

The use of Instance-Based Learning (IBL) techniques to perform anomaly detection is

proposed by Lane and Brodley in [71]. In this work, feature vectors are extracted from

UNIX shell commands and compared to historical profiles using a similarity measure.

A sequence of real-valued similarity measures is then processed by a noise-suppression

filter. The smoothed data stream is then classified by a threshold decision module,

where the decision boundaries have been specified by manual analysis of historical

user behavior. The proposed system also includes a feedback loop to update user profile

and classification parameters; this is intended to address the problem of concept drift.

Additionally, two approaches to reducing data storage requirements for the system were

evaluated: LRU pruning, and clustering using both K-centers and greedy algorithms.

The system was evaluated over training data accumulated from real UNIX systems, and

was shown to produce results with good accuracy. A drawback of the system, however,

is its offline nature, which impacts both the currency of its alerts as well as, in some

cases, its accuracy.

Valdes and Skinner describe the use of Bayesian networks for network-based anomaly
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detection in [122]. In particular, the authors propose the analysis of TCP stream bursti-

ness to discriminate between normal and anomalous traffic. The Bayesian network they

describe contains evidence nodes for various features of network traffic, and a single

hypothesis node that can assume belief values over a range of normal and anomalous

values. A monitor updates the evidence nodes with observations from the network,

and a Bayesian inference engine classifies the traffic at the hypothesis node using well-

known belief propagation algorithms. The authors also describe means by which the

network can adapt to concept drift, either by updating the conditional probability ta-

bles corresponding to each evidence node, or by dynamically adding new hypotheses

to the root node. Although the system performed well over the 1999 MIT Lincoln Labs

IDEVAL data sets, it fared less well on real-world data. Also, the proposed system has

been criticized for its use of a naive Bayesian network. This criticism is mainly due to

the fact that naive Bayesian networks fail to model conditional dependencies between

evidence nodes, and devolve in practice to the weighted sum approach.

In [72], Lee and Stolfo propose a general framework for anomaly detection, called

MADAM ID, that incorporates data mining techniques to improve detection capability.

In contrast to other machine learning-based anomaly detection systems, where features

are chosen manually by domain experts, MADAM ID also uses data mining algorithms

to automatically identify the features to extract. First, association rules, or multifeature

relationships, are automatically derived for both the training set of normal data and an

attack training set. These rules are then filtered by domain experts to include only those

features essential to facilitating detection. Then, the rules generated by processing both

data sets are compared to identify those rules that accurately discriminate between nor-

mal and malicious behavior. The system was evaluated against the 1998 MIT Lincoln
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Labs IDEVAL data set, and ranked as one of the most effective systems tested. A sig-

nificant caveat, however, is that the system requires a labelled attack data set to identify

discriminating rules.

Lee and Xiang propose the use of information theoretic measures to provide a frame-

work within which anomaly-based intrusion detection systems can systematically be

improved in [73]. In particular, the authors observe that lower entropy data is likely

to produce simpler, more robust models due to its inherent regularity. Similarly, the

authors describe how conditional entropy can indicate whether sequences of features

are deterministic. Relative entropy, or the Kullback-Leibler divergence, is proposed as

a measure of the similarity of two data sets. Finally, information gain is proposed as a

measure of the discriminatory power of event features. The authors also present several

case studies demonstrating how these measures may be used in practice.

One of the first attempts to apply anomaly detection techniques to application-level data

is due to Kruegel et al. [67]. The system described is network-based, and is composed

of two high-level modules: the Packet Processing Unit (PPU) and Statistical Processing

Unit (SPU). The PPU is responsible for normalizing network streams and performing

service-specific protocol parsing. The actual detection methodology is implemented by

the SPU. Protocol messages are first grouped according to type; for instance, HTTP

GET requests are considered separately from HTTP POST requests. Then, an anomaly

score for each message is obtained by computing the weighted sum of various statistical

measures applied to three request features: type, length, and payload distribution. The

system is evaluated against data sets of HTTP and DNS traffic, and exhibited promising

detection accuracy. Indeed, the approach proposed by this paper heralded much of the
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later research into web application anomaly detection.

Kruegel et al. present a multi-model approach to web application anomaly detection

in [68]. In this paper, the intrusion detection system processes web server access logs,

from which statistical models are learned for each unique request path and parameter.

These models include the token model, which records the set of unique values a par-

ticular parameter can take; the length model, which uses the Chebyshev inequality to

derive loose bounds on the length of a parameter value; the character distribution model,

which constructs an idealized distribution of the characters comprising observed param-

eter values; and a structural inference model, which uses established HMM induction

techniques to build a probabilistic grammar that captures normal parameter structure.

The system was evaluated over real-world data sets, and was shown to exhibit high de-

tection accuracy and a low false positive rate. Additionally, the multi-model approach

was validated by demonstrating that individual attack types were better detected by

different subsets of the individual models.

Wang and Stolfo describe a service-agnostic network-based anomaly detection system

called PAYL in [132]. The PAYL system characterizes normal behavior by modeling

byte frequency distributions of network packet payloads. During the training phase, dis-

tributions are computed for each packet observed; separate distributions are maintained

for each network port, stream direction, and payload length. At the end of the training

phase, a clustering algorithm is applied to merge similar distributions for a given port

and stream direction. The clustering algorithm uses the Manhattan distance to repeat-

edly compare distributions of consecutive length, merging similar distributions until the

distance between each resulting cluster is above a certain threshold. Then, during the
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detection phase, byte frequency distributions for observed network payloads are com-

pared against the learned models using a simplified Mahalanobis distance. Significant

deviations from the models result in an alert. The authors also propose the Z-string,

which is simply a ranked byte frequency distribution, as a canonical form of learned

models that can be used as a type of signature.3 The system was evaluated against the

1999 Lincoln Labs IDEVAL data set.

The PAYL system was further extended in [130] by Wang, Cretu, and Stolfo to generate

multiple centroids per observed payload length as well as to correlate ingress-egress

alerts in order to detect worm propagation. In particular, the authors evaluate the use of

string equality, longest common substring, and longest common subsequence matching

to measure the similarity between suspected worm payloads. PAYL, however, was later

demonstrated to be vulnerable to mimicry attacks due to blended, polymorphic worms

by Kolesnikov et al. [63]

In response, Wang et al. proposed the use of higher-order n-grams in [131]. Due to the

exponential growth in memory overhead and required training set size as n increases,

the authors utilize Bloom filters to record n-grams observed from packet payloads dur-

ing the training phase. This has the benefit of low computational overhead, as well as

removing the restriction that n be fixed. During the detection phase, packet payloads

are scored according to the proportion of n-grams observed that are not contained in

the Bloom filter. The authors further propose a criterion for automatically determining

when a model has been sufficiently trained by computing the likelihood of observing

new n-grams. Finally, the authors describe a process of randomized modeling, where

3Incidentally, the Z-string exhibits striking similarity to the idealized character distribution described
in [68].

56



W. ROBERTSON DETECTION AND PREVENTION OF WEB-BASED ATTACKS

multiple models are computed over a fixed, secret partition of packet payloads. The

partitioning is considered equivalent to a secret key that cannot be guessed by attackers

attempting to thwart the n-gram analysis through the use of exploit fragmentation and

payload padding.

Ingham et al. propose a DFA induction approach to modeling normal HTTP requests

in [48]. During the training phase, HTTP requests are normalized and tokenized ac-

cording to a set of heuristics. The Burge DFA induction algorithm is then applied to

the observed token sequences, and a separate DFA compression algorithm is applied

at regular intervals. The compression algorithm has the effect of introducing a lim-

ited amount of generalization into the resulting DFA. Then, during the detection phase,

observed token sequences are compared to the learned model by determining whether

the induced DFA could potentially generate the observed sequence. The comparison

algorithm, however, tolerates underivable tokens by recording the event and attempt-

ing to resynchronize with the DFA. A similarity measure between the observed token

sequence and the DFA is then calculated as the proportion of tokens reached by valid

transitions over the total number of tokens in the sequence. Additionally, when a token

sequence exhibits a strong, but imperfect, similarity to the model, the DFA is modified

to incorporate new states and transitions to reflect the observed token sequence. This

process introduces a nonstationarity property that is intended to reduce false positives

and address the issue of concept drift. Unfortunately, the resulting system exhibits a

significant false positive rate, and the incremental updating performed on the DFA dur-

ing the detection phase renders the system vulnerable to attacks that slowly poison the

DFA to accept malicious requests as normal.
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A recent effort on addressing training set deficiencies has been proposed in [20]. In

this work, a sanitization phase is first performed to remove suspected attacks and other

abnormalities from the data. Instead of creating one model instance, a set of “micro-

models” is trained against disjoint subsets of the training data. These micro-models are

then subject to one of several voting schemes to recognize and cull outliers that may

represent attacks.

In [37], the authors propose a cluster-based anomaly detection system as a means of

reducing false positives. The system accomplishes this by clustering similar behavioral

profiles for individual hosts using the k-means algorithm, although the exact distance

metric used was not explicitly given. Then, alerts are generated according to a voting

scheme, where the causal event for an alert is evaluated against behavior profiles from

other members of that host’s cluster. If the event is deemed anomalous by all members

of the cluster, an alert is generated.

In [82], a mixture of machine learning techniques is exploited to detect anomalous

system calls in the Linux kernel. Ad-hoc distances between system calls are defined to

perform clustering in order to identify natural classes of similar calls. The reduced size

of the clustered input makes the training of Markov chains efficient. The behavior of

each host application is modeled as Markov chains on which probabilistic thresholds

are calculated to detect misbehaving sequences.

A recent proposal for the anomaly-based detection of web-based attacks is presented

in [113]. In this work, a mixture of Markov chains incorporating n-gram transitions is

used to model the normal behavior of HTTP request parameters. The resulting system

attains a high detection accuracy for a variety of web-based attacks.
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HTTP responses are exploited in [141]. In addition to other features, the DOM is

modeled to enhance the detection capabilities of SQL injection and cross-site scripting

attacks.

2.4 Evaluating intrusion detection systems

In [100], Puketza et al. propose a general methodology for testing intrusion detection

systems. To guide their testing approach, the authors identify several broad perfor-

mance objectives for intrusion detection systems. First, the IDS should be able to ac-

curately identify intrusions. Second, the IDS should maintain its resource consumption

within reasonable limits. Finally, the IDS should be resilient to “stressful” conditions,

such as attacks against the system itself. The authors then propose the use of the expect

tool as part of a framework to automatically execute test cases against an IDS under test.

The testing framework is capable of generating both normal background traffic as well

as attacks, and includes a means of synchronizing test cases to facilitate deterministic

testing. The framework is then used to demonstrate how an IDS might be evaluated

according to the performance objectives previously identified.

Axelsson highlights an important, and previously neglected, consideration when de-

signing and evaluating intrusion detection systems in [4]. Specifically, the author ap-

plies the well-known base-rate fallacy to the problem of intrusion detection. The base-

rate fallacy itself is a direct consequence of Bayes’ theorem, and states that an interpre-

tation of the conditional probability of an event given evidence of that event must take

into consideration the prior probability, or base-rate, of that event actually occurring.
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In the context of intrusion detection, the author shows that since the prior probability

of an attack occurring in most environments is generally low, intrusion detection sys-

tems must attain extremely low false positive rates in order to achieve an acceptable

detection rate. The author concludes that the proper optimization strategy for designers

of intrusion detection systems is not to maximize the detection rate, but rather to mini-

mize the false positive rate. Consequently, minimizing the false positive rate became a

central design goal of subsequent intrusion detection systems.

Lippmann et al. report on a milestone event in the evaluation of intrusion detection

systems in [76]. Sponsored by DARPA, the 1998 MIT Lincoln Labs Offline Intrusion

Detection Evaluation was the first organized large-scale attempt to evaluate the state-

of-the-art in intrusion detection. In the course of the evaluation, background traffic for

a network of thousands of hosts with hundreds of users was simulated. 300 instances

of 38 distinct attacks of various types were also introduced, and a number of intrusion

detection systems were evaluated on the resulting data sets. As a result of this evalu-

ation, the authors concluded that the ability of the then-current generation of intrusion

detection systems to detect novel attacks was unsatisfactory. Due to the paucity of high-

quality training data, the 1998 and 1999 MIT Lincoln Labs IDEVAL data sets became

very influential in the evaluation of subsequent intrusion detection systems.

The MIT Lincoln Labs IDEVAL data sets were not without their detractors, however.

One published critique is due to McHugh [84]. While the author is careful to emphasize

the point that the IDEVAL data was valuable in that no other data comparable in quality

was available to IDS researchers, he nevertheless points out several shortcomings. First,

the author criticizes the noticeable absence of commercial systems from the evaluation,
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which he claims is due to an assumed inferiority of such systems on the part of the

evaluation organizers. Second, the author attacks the means by which background data

was generated, highlighting the absence of any quantifiable measure of the similarity of

the background traffic to real samples. Third, the realism of the attack traffic is called

into question, particularly the distribution of attack instances among the background

traffic. Similar critiques are levied against the simulated network architecture. As a

final example, the taxonomy of attacks is attacked for several reasons. Due in part to

McHugh, awareness of the difficulties involved in evaluating an IDS against synthetic

traffic slowly permeated through the research community. This prompted researchers

to, at a minimum, avoid relying solely on the IDEVAL data sets to evaluate proposed

intrusion detection systems.

2.5 Attacking intrusion detection systems

The first substantial work documenting ways in which intrusion detection systems could

be attacked is due to Ptacek and Newsham [99]. In particular, the authors identify two

main problems with misuse-based network intrusion detection systems. First, network-

based IDSs are susceptible to desynchronization attacks, in which the modeled state

of network traffic and endpoint state is forced by an attacker to diverge from their true

state. Second, due to the requirement that they must protect multiple, perhaps many,

endpoints, network-based IDSs are vulnerable to denial of service attacks. The authors

identify three classes of desynchronization attacks that can be mounted: insertion, eva-

sion, and ambiguities. Insertion attacks involve identifying network packets that an
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IDS will accept as legitimate, but an endpoint will discard. Evasion attacks refer to the

transmission of packets that an IDS will reject, but an endpoint will accept. Finally,

ambiguity attacks exploit a lack of knowledge on the part of the IDS concerning corner

case endpoint behavior and network topology. The authors proceed to identify many

real-world examples of such attacks at both the IP and TCP layers. Several examples of

denial of service attacks are also presented, most notably that of resource exhaustion.

In [124], Vigna et al. present a systematic, automated framework for testing the re-

silience of misuse-based intrusion detection systems to evasion attacks. The framework

operates by automatically generating and executing mutant exploits, or variations on

known attacks, against a testbed composed of vulnerable systems monitored by a set of

intrusion detection systems under test. A number of mutation operators, each of which

act at either the network, application, or exploit payload levels, are contained within

a mutation engine. These mutation operators are responsible for applying semantics-

preserving modifications to an exploit, and are deterministic with respect to a given

seed value that is supplied by the mutation engine. Mutant exploits are generated from

templates, which are exploits that have been annotated with information on how they

may be modified by various types of mutation operators. During testing, the mutation

engine randomly searches the space of possible mutations, generating and executing

mutant exploits against the target systems. An oracle provides feedback to the mu-

tation engine indicating whether a mutant exploit has successfully compromised the

target, and whether the IDS has successfully been evaded. The framework was shown

to be effective at automatically generating mutant exploits that evaded both Snort and

ISS RealSecure while retaining the ability to compromise the target system.
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2.6 Server-side web application attack prevention

As with intrusion detection, an extensive literature exists on the detection of web appli-

cation vulnerabilities. One of the first tools to analyze server-side code for vulnerabili-

ties was WebSSARI [46], which performs a taint propagation analysis of PHP in order

to identify potential vulnerabilities, for which runtime guards are inserted. Nguyen-

Tuong et al. proposed a precise taint-based approach to automatically hardening PHP

scripts against security vulnerabilities in [91]. Livshits and Lam [78] applied a points-to

static analysis to Java-based web applications to identify a number of security vulner-

abilities in both open-source programs and the Java library itself. Jovanovic et al. pre-

sented Pixy, a tool that performs flow-sensitive, interprocedural, and context-sensitive

data flow analysis to detect security vulnerabilities in PHP-based web applications [54];

Pixy was later enhanced with precise alias analysis to improve the accuracy of the tech-

nique [55]. A precise, sound, and fully automated technique for detecting modifica-

tions to the structure of SQL queries was described by Wassermann and Su in [134].

Balzarotti et al. observed that more complex vulnerabilities in web applications can

manifest themselves as interactions between distinct modules comprising the applica-

tion, and proposed MiMoSA to perform multi-module vulnerability analysis of PHP

applications [7]. In [14], Chong et al. presented SIF, a framework for developing Java

servlets that enforce legal information flows specified by a policy language. A syntactic

technique of string masking is proposed by Johns et al. in [51] in order to prevent code

injection attacks in web applications. Lam et al. described another information flow

enforcement system using PQL, and additionally propose the use of a model checker

to generate test cases for identified vulnerabilities [70]. In [6], Balzarotti et al. applied
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a combination of static and dynamic analysis to check the correctness of web applica-

tion sanitization functions. Wassermann and Su applied a combination of taint-based

information flow and string analysis to enforce effective sanitization policies against

cross-site scripting in [135]. Nadji et al. propose a similar notion of document structure

integrity in [89], using a combination of web application code randomization and run-

time tracking of untrusted data on both the server and the browser. Finally, Google’s

ctemplate [39], a templating language for C++, and Django [23], a Python-based web

application framework, include an Auto-Escape feature that allows for context-specific

sanitization of web documents, while Microsoft’s LINQ [85] is an approach for per-

forming language-integrated data set queries in the .NET framework.

2.7 Client-side web application attack prevention

In addition to server-side vulnerability analyses, much work has focused on client-side

protection against malicious code injection. The first system to implement client-side

protection was due to Kirda et al. In [59], the authors presented Noxes, a client-side

proxy that uses manual and automatically-generated rules to prevent cross-side script-

ing attacks. Vogt et al. proposed a combination of dynamic data tainting and static

analysis to prevent cross-site scripting attacks from successfully executing within a web

browser [127]. BrowserShield, due to Reis et al., is a system to download signatures

for known cross-site scripting exploits; JavaScript wrappers that implement signature

detection for these attacks are then installed into the browser [101]. Livshits and Er-

lingsson described an approach to cross-site scripting and RSS attacks by modifying
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JavaScript frameworks such as Dojo, Prototype, and AJAX.NET in [77]. BEEP, pre-

sented by Jim et al. in [50], implements a coarse-grained approach to client-side policy

enforcement by specifying both black- and white-lists of scripts. Erlingsson et al. pro-

posed Mutation-Event Transforms, a technique for enforcing finer-grained client-side

security policies by intercepting JavaScript calls that would result in potentially mali-

cious modifications to the DOM [27].

2.8 Functional language security

Several works have studied how the safety of functional languages can be improved.

Xu proposed the use of pre/post-annotations to implement extended static checking for

Haskell in [138]; this work has been extended in the form of contracts in [139]. Li and

Zdancewic demonstrated how general information flow policies could be integrated

as an embedded security sublanguage in Haskell in [74]. A technique for perform-

ing data flow analysis of lazy higher-order functional programs using regular sets of

trees to approximate program state is proposed by Jones and Andersen in [52]. Mad-

havapeddy et al. presented a domain-specific language for securely specifying various

Internet packet protocols in [81]. In [34], Finifter et al. describe Joe-E, a capability-

based subset of Java that allows programmers to write pure Java functions that, due to

their referential transparency, admit strong analyses of desirable security properties.
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Chapter 3

The Design and Implementation of

WEBANOMALY

WEBANOMALY is an advanced anomaly detection system that is designed to protect

web applications against attack from malicious clients. WEBANOMALY uses statistical

machine learning techniques to automatically build models that characterize various

features of web application behavior. These models are then used to detect both known

and unknown attacks against web applications. This chapter presents an abstract model

for web applications and discusses the design and implementation of WEBANOMALY.
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a1

r1,1 · · · r1,i · · · r1,n

p1,1,1 p1,1,2 · · · p1,i,j p1,i,j+1 · · · p1,n,m−1 p1,n,m

Figure 3.1: Abstract model of the structure of a web application.

3.1 The web application model

As depicted in Figure 3.1, a set of web applications A can generally be decomposed

into a tree of resource paths, or components, R, and named parameters P . A web

application receives sequences of requests Q = {q1, q2, . . .} issued by web clients, and

generates in return a sequence of responses S = {s1, s2, . . .}.

Each request q ∈ Q can be represented by the tuple q = 〈ai, ri,j, Pq〉, where ai is a web

application, ri,j is a resource path associated with the web application, and Pq ⊆ Pi,j is

a subset of possible parameter name-value pairs that ri,j accepts. The target component

of a query, ri,j , processes the request and generates a response si = 〈Kq, dq〉, where Kq

is a set of cookies to be instantiated or cleared on the client, and dq is a document (e.g.,

HTML, JSON) to be interpreted by the client.

For example, a web application a1 = blog.example.com might be composed of the

resources shown in Figure 3.2. Additionally, resource path ri,7 might take a set of

parameters as part of an HTTP request such as Pi,7 = {pi,7,1 = oldpw, pi,7,2 = newpw}.
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Ri =



ri,1 = /index,

ri,2 = /article,

ri,3 = /comments,

ri,4 = /comments/edit,

ri,5 = /account/login,

ri,6 = /account/index,

ri,7 = /account/password


Figure 3.2: Resources comprising an example web application blog.example.com.

A client might issue a query to ri,7 of the form

q =


blog.example.com,

/account/password,

{(oldpwd, foo) , (newpw, bar)}


.

The web application might issue a response of the form s = {∅, “<html> . . . ”}, indi-

cating that no cookies are to be set, and an HTML document is to be rendered.

For each monitored web application, WEBANOMALY builds an internal set of models.

These models mirror the particular abstract structure of each application by analyzing

the sequences of queries and responses observed by the system. The following sec-

tion describes the various components of WEBANOMALY and how these models are

constructed.

68



W. ROBERTSON DETECTION AND PREVENTION OF WEB-BASED ATTACKS

Event
collection

Anomaly
detection

Anomaly
clustering

Anomaly
signature
generation

Attack
class

inference
Event
domain

Anomaly
clusters

HTTP
events Anomalies

Unmatched
anomalies

Anomaly
signatures

Classified
signatures

Anomaly
cluster

HTTP
messages

Matched
anomalies

Global
profiles

Well-trained
profiles

Alert
responses

Alert
database

Alerts

Clustered,
classified
anomalies

Local
profiles

Learned
profiles

Figure 3.3: Architectural overview of WEBANOMALY.

3.2 The architecture of WEBANOMALY

At a high level, WEBANOMALY can be decomposed into several components. First, an

event collection component monitors a network to capture and normalize HTTP mes-

sages for analysis. These events are forwarded to an anomaly detection engine that is

responsible for both learning the structure and behavior of monitored web applications

as well as detecting attacks against the applications. Any detected anomalies subjected

to a series of post-processing steps that result in a reduced false positive rate and im-

proved explanatory capability regarding the nature of the anomaly. Alerts can then

trigger an action to be executed in response to the anomaly. A graphical overview of

the components of WEBANOMALY is presented in Figure 3.3. The following sections

describe each of these components in turn.
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3.2.1 Event collection

WEBANOMALY performs its analysis on sequences of HTTP requests and responses.

Before this can occur, however, raw HTTP messages must be converted into an inter-

nal format that is suitable for analysis. Accordingly, WEBANOMALY incorporates an

efficient event collection component that can capture HTTP messages either actively or

passively.

In passive mode, the event collector captures link-layer packets from the network as

they are transmitted between HTTP clients and servers. The collector performs packet

defragmentation and stream reassembly for each observed network flow. The resulting

stream byte sequences are then made available for HTTP message parsing. Passive

mode has the advantage that failures in WEBANOMALY do not affect the normal opera-

tion of the set of monitored web applications. Also, misclassifications by the anomaly

detector do not have as high of a negative impact on the functioning of monitored web

applications, since messages cannot be blocked or modified. On the other hand, passive

mode does not allow for the prevention of attacks, since WEBANOMALY only observes

network traffic instead of interposing itself between the endpoints.

In active mode, the event collector acts as an HTTP reverse proxy, serving as an inter-

mediary between HTTP clients and servers. Client connections are terminated by the

collector, and a connection pool is maintained to a set of back-end web servers. There-

fore, both client queries and server responses are directly received as byte sequences

by WEBANOMALY. These sequences are then subject to HTTP message parsing for

analysis. Active mode has the clear advantage that messages can easily be modified or
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blocked in response to detected anomalies. Additionally, this mode of operation allows

for the use of network optimization techniques, such as pipelining client requests over

established network connections from the server connection pool. Failures or misclas-

sifications, however, have a high impact on the proper functioning of monitored web

applications in this mode.

Once a byte sequence representing an HTTP message has been captured, the sequence

must be parsed into a high-level representation for analysis. To this end, the event col-

lection component incorporates a robust set of HTTP parsing methods. During parsing,

these methods extract a number of features that are examined during the analysis stage.

Features extracted from queries include, but are not limited to, the requested path, any

parameters contained in both the resource path and message body, HTTP headers such

as the content type and length, and the contents of any cookies. Examples of features

extracted from responses include relevant headers and parse trees corresponding to the

structure and content of several types of documents (e.g., HTML, XML, JSON). Addi-

tionally, features from the network layer are extracted from both queries and responses,

such as timestamps and endpoint addressing information.

Extensive profiling was performed during the development of the collector (and, indeed,

the rest of WEBANOMALY) in order to optimize its performance. For instance, mem-

ory copies were eliminated whenever possible to reduce cache pollution and memory

bandwidth utilization. Also, many lower-level parsing routines were hand-optimized

in assembly to take advantage of advanced processor instructions not utilized by the

compiler or to implement efficient string operations specific to HTTP message parsing.

As a result, WEBANOMALY is capable of processing significant network loads.
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3.2.2 Anomaly detection engine

HTTP messages collected from the network are then forwarded to the anomaly detec-

tion engine for analysis. This component is responsible for learning the normal behav-

ior of a set of web applications, and detecting deviations from learned behavior. These

specifications of behavior are contained in sets of models, where each model uses sta-

tistical methods to characterize a specific feature of HTTP messages. These models can

be considered to operate in one of two phases: training and detection.

The training phase consists of an online learning process applied to a sequence of

queries and responses. As new resources and parameters are observed, correspond-

ing sets of models are created by the anomaly detection engine. With each subsequent

HTTP message, the appropriate models are updated to reflect the behavior of specific

features of the message. Once a sufficient number of training samples has been ob-

served, a model or set of models can then switch to the detection phase.

In [66], a fixed-length training phase was proposed. Further experimentation, how-

ever, has shown that an appropriate training phase length is highly dependent upon the

complexity of modeling a given set of features. Therefore, we have developed an auto-

mated method that leverages the notion of model stability to determine when a model

has observed a sufficient number of training samples to accurately model a feature.

As new training samples are observed early in the training phase, the state of a model

typically exhibits frequent and significant change as its approximation of the normal

behavior of a feature is updated. Informally, in an information-theoretic sense, the

average information gain of each new training sample is high. However, as a model’s
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state converges to a more precise approximation of normal behavior, its state gradually

exhibits infrequent and incremental changes. In other words, the information gain of

new training samples approaches zero, and the model stabilizes.

Each model therefore monitors its stability during the training phase by maintaining a

history of snapshots of its internal state. Periodically, a model checks if the sequence of

deltas between each successive historical state is monotonically decreasing and whether

the degree of change drops below a certain threshold. If both conditions are satisfied,

then the model considers itself stable and ready to switch to the detection phase.

During the detection phase, sets of models are compared to features of HTTP messages.

Using statistical methods, a similarity score is computed between the learned models

and observed features – that is, the similarity score is the probability that the observed

feature fits the models learned during the training phase. If the similarity between a set

of models and the observed feature is less than a given threshold, then the corresponding

HTTP message is considered anomalous.

A detailed description of the individual models and learning algorithms is deferred until

Section 3.3.

Models that have been trained, or are in the process of being trained, are stored in a local

profile database. As Figure 3.3 indicates, a separate global profile database containing

a disjoint set of models is also available to the anomaly detection component. The

function of this database will be discussed in detail in Chapter 5.
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3.2.3 Anomaly clustering and characterization

Reports of anomalies from the anomaly engine are forwarded to a set of inter-related

components for post-processing. The goal of these components is twofold. First, these

components cluster related anomalies in order to reduce the effective false positive rate

of the detector. Secondly, a process of attack inference is performed to classify the type

of attack that an anomaly represents. This gives WEBANOMALY the capability to better

explain why an anomaly is malicious.

These components are presented in detail in Chapter 4.

3.2.4 Alert responses

Sets of anomalies, possibly annotated with additional information, are passed from the

previous clustering and characterization components to a response component. This

component is responsible for performing a set of configurable actions in response to

anomalies. In particular, one approach is to log anomalies and prepare reports for anal-

ysis by a site security administrator. This approach corresponds to the traditional model

of intrusion detection. On the other hand, active responses, such as directly blocking

HTTP messages if the detector is in active mode, or inserting firewall rules at the site

perimeter, are possible. The active approach corresponds to the so-called intrusion

prevention (IPS) approach. Both approaches are implemented for completeness; a dis-

cussion, however, of the specific type of response to an anomaly is largely orthogonal

to the main focus of this dissertation.
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ca1

ca1,r1 · · · ca1,ri · · · ca1,rn

ca1,r1,p1 ca1,r1,p2 · · · ca1,ri,pj
ca1,ri,pj+1 · · · ca1,rn,pm−1 ca1,rn,pm

Figure 3.4: The hierarchy of models constructed by WEBANOMALY. Session profiles are cre-
ated across the entire web application a1 at the root of the hierarchy. Document
profiles are created for each unique resource ri. Parameter profiles are created for
each unique resource and parameter (ri, pj).

3.3 Modeling web applications

WEBANOMALY applies sets of models to each of the various features of monitored web

applications to be analyzed. Though each of these models utilizes different statisti-

cal methods to characterize their normal behavior, some details are common to each

model. For instance, each model records the number of training samples observed.

Furthermore, each model incorporates a confidence value that denotes the degree to

which the model believes it has accurately characterized the feature it is applied to.

This confidence value takes values on the interval [0, 1], and is used as a scaling factor

on anomaly scores during the detection phase.

A number of models are used to characterize both features of individual HTTP requests

as well as sequences of requests from a given client. For individual requests, a set of

models are applied to each unique parameter pi,j,k observed during the training phase.
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These sets are generically known as profiles, and are represented by the tuple

cpi,j,k
=

〈
m(tok), m(int), m(len), m(char), m(struct)〉 .

For sequences of HTTP requests Q = {q1, q2, . . .} from a given client, a profile con-

sisting of a pair of models is applied:

cai
=

〈
m(int), m(sess)〉 .

Finally, a profile is applied to characterize the structure of responses ri,j generated by

the monitored web applications, where

cri,j
=

〈
m(doc)〉

Figure 3.4 displays the hierarchy of profiles created for each web application. Session

profiles are created across an entire web application a1 at the root of the hierarchy.

Document profiles are created for each unique resource ri. Finally, parameter profiles

are created for each unique resource and parameter (ri, pj).

In the following, the details of each of the individual models is described, as well as

how each set of models is composed during the detection phase in order to derive a final

anomaly score.
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<select name="role">

<option value="user"/>

<option value="devel"/>

<option value="admin"/>

</select>

Figure 3.5: Example of an HTML <select/> input field that can be characterized by a token
model.

3.3.1 Token model

The token model m(tok) characterizes features that take values drawn from a discrete

set of values. For instance, consider an HTTP request parameter that corresponds

to an HTML <select/> input field, shown in Figure 3.5. It is clear that the role

parameter to the web application should only take one of three values from the set

{user, devel, admin}. Indeed, this can be viewed as an informal specification of the

legitimate behavior of the parameter by the developers of the web application.

It is often the case, however, that hidden parameter values can enable additional func-

tionality in a web application that should not be accessed by unauthorized clients. For

example, the role parameter might also accept the value test, activating a debugging

interface that exposes sensitive functionality. Token models are particularly well-suited

to detecting such attacks, where the set of legitimate values is relatively small and is

explicitly encoded by the developers.

Training phase. During the training phase, the set of unique observed values V for

a given feature is recorded. Then, at periodic intervals a statistical test is performed to

determine the correlation between the number of unique values and the total number of
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samples observed since the beginning of the training phase. In [66], an ad hoc test was

used to calculate the correlation coefficient between these two values. WEBANOMALY

has since eschewed this test in favor of the Kendall τ rank correlation coefficient [57],

a non-parametric test to measure the degree of correspondence between two rankings.

The test is defined as

τ =
nc − nd

1
2
n (n− 1)

,

where nc is the number of concordant pairs, nd is the number of discordant pairs, and

n is the total number of pairs. In this application, a concordant pair is assumed if a

new value was observed at a training step, and a discordant pair is assumed otherwise.

Therefore, if unique values are often observed at each training step, the resulting corre-

lation will be high, and the confidence of the token model will be set to zero. Otherwise,

if the correlation is low, the token model will be used to characterize the feature, with a

confidence value set to the normalized correlation coefficient.

Detection phase. During the detection phase, the probability of an observed value v

is simply

Pr (v) =


0 if v /∈ V

1 otherwise
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3.3.2 Integer model

Many features of web applications can be characterized as a set of integers drawn from

an unknown distribution. For instance, HTTP request parameters may expect strings

encoding integer literals as values. The lengths of parameter values are another feature

that manifests as an integer distribution. Attacks against web applications can often

manifest themselves as deviations from these distributions, however. For example, a

buffer overflow or code injection attack may result in a parameter length that is sig-

nificantly longer than normal values. WEBANOMALY incorporates an integer model

m(int) that characterizes the normal behavior of integer distributions, allowing for the

detection of such attacks.1

Training phase. During the training phase, the sample mean µ and variance σ2 are

incrementally computed from observed values. At periodic intervals, the stability of

these statistics are checked as described in Section 3.2.2.

Detection phase. The probability of an observed integer sample v is calculated during

the detection phase through an application of the Chebyshev inequality, where

Pr (|x− µ| − |v − µ|) < Pr (v) =
σ2

(v − µ)2 .

The Chebyshev inequality is a non-parametric test that uses the sample mean and vari-

ance to establish a bound upon the probability of the deviation of an observed value

1Note that the length model m(len) is simply an application of m(int) to the length of strings.
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(b) Character distribution for a buffer overflow.

Figure 3.6: Character distribution models for both legitimate and malicious values.

from the sample mean. The bound that is computed is weak, thereby providing a mea-

sure of generalization from the training data. That is, only significant deviations from

the training set are considered to be anomalous.

3.3.3 Character distribution model

Assuming an ASCII or UTF-8 character encoding, HTTP request parameters can be

considered as sequences of (largely) 8-bit character values. Parameter values typically

do not exhibit a uniform distribution of characters, however. Rather, it is often the

case that printable characters such as letters, numbers, and punctuation solely comprise

the legitimate set of parameter values. Indeed, well-known distributions of character

frequencies exist for English and many other languages.

On the other hand, attacks often include non-printable characters, in the case of buffer

overflow attacks, or special characters that do not often appear in legitimate values, as

in the case of XSS or SQL injection attacks. Furthermore, characters can be distributed
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in a significantly different manner than that for legitimate values. Figure 3.6 shows two

example character distributions. In Figure 3.6a, a standard frequency histogram for En-

glish text can be observed. In Figure 3.6b, however, the histogram for a buffer overflow

clearly indicates a long-tailed distribution that differs significantly from English text.

Therefore, WEBANOMALY includes a character distribution model m(char) that charac-

terizes the normal distribution of characters comprising various web application fea-

tures.

Training phase. During the training phase, the frequencies of individual characters

are recorded. At periodic intervals, the idealized character distribution (ICD) of the

modeled feature is generated. The ICD is constucted by taking the mean of the fre-

quency of each character observed, normalizing the mean to the interval [0, 1], and

ranking these frequencies from highest to lowest. Because all individual character

distributions sum to unity, their average will do so as well, and the ICD is therefore

well-defined. A sliding window of ICDs is maintained during the course of the training

phase, and when the ICDs converge to a fixed point, the character distribution model

switches to the detection phase.

Detection phase. In this phase, the ICD of each observed feature value v is con-

structed. The probability of v is then given by the similarity between the ICD learned

during the training phase and the ICD generated from v. This similarity is calculated

using the Pearson χ2 goodness-of-fit test. The χ2 test requires that the function domain

be discretized into a small number of intervals, and it is preferable that all intervals
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contain “some” elements.2 Therefore, given m intervals and binned ICDs O and E for

the observed and learned ICDs respectively, the probability of v is given by

Pr (v) ≡ χ2 =
i<m∑
i=0

(Oi − Ei)
2

Ei

,

where the computed χ2 value is used as an index into a predefined probability table.

3.3.4 Structure model

Although many attacks are sufficiently different from normal behavior to be reliably

detected using the previously described models, some attacks manifest themselves as

feature values that are “close” to normal behavior. For instance, some attacks might not

be significantly longer than legitimate parameter values, or an attack might be encoded

to include only characters corresponding to English text. In these cases, a more power-

ful model is needed to characterize the feature in order to reliably discriminate between

normal and malicious values. WEBANOMALY includes a structure model m(struct) for

this purpose.

The structure model is an instance of a Hidden Markov Model (HMM), a probabilistic

finite state automaton that encodes a grammar that can generate a superset of the legiti-

mate feature values observed during the training phase. An HMM is represented by the

tuple

m(struct) = 〈S, E, δ, P 〉 ,

2The literature suggests that at least five elements is sufficient in most cases.
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Figure 3.7: Example of a structure model HMM. Here, the start state has no emissions and
indegree 0. The final state has no emissions and outdegree 0; it is indicated with
a double border. The remaining nodes indicate a probability distribution over the
symbols that may be emitted at each node, and arcs are labeled with their transition
probabilities. The set of arcs directed from a node form a transition probability
distribution from that node.

where S is the set of states, E is the set of symbol emissions, δ : S × E 7→ S is a

transition function, and P : S×S×E 7→ [0, 1] is a probability distribution over the sets

of states, transitions, and emissions. A graphical representation of a structure model is

shown in Figure 3.7.

Training phase. The process used to construct a structure model is an online algo-

rithm due to Stolcke [116]. Initially, the HMM is composed of unconnected start and

end states s0 and s1. For each observed feature value, the HMM is updated to reflect the

observed sequence of symbols comprising the value. That is, starting from s0, a check

is performed to determine whether a transition exists from the current state to a target

state that can emit the next symbol. If such a transition exists, the traversal counts for
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both the existing transition and symbol at the target state are incremented. Otherwise,

a new target state, emission, and transition from the current state to the target state are

created.

At regular intervals during the training phase, a process of state merging is performed

on the current HMM. The goal of merging states is to induce generalization in such a

way that the a posteriori probability of the HMM given the training data is maximized.

This problem can be formulated using the celebrated Bayesian theorem

Pr (M | D) =
Pr (D | M) Pr (M)

Pr (D)
,

where M is the HMM, D is the training data, Pr (D | M) is the likelihood of the data

given the model, Pr (M) is the prior probability of the model, Pr (D) is the probability

of the data, and Pr (M | D) is the posterior probability of the model given the data. At

each step during the merging process, the pair of states whose merge would result in an

HMM with a higher posterior probability are selected. If no such pair exists, the merg-

ing process stops. The training phase continues to update the HMM and periodically

merge states until the posterior probability of the HMM converges to a fixed point.

One important point to note is that the sequence of symbols derived from a parameter

value typically does not have a one-to-one correspondence with the actual characters

comprising that value. This is primarily due to the fact that the computational complex-

ity of evaluating an HMM over a symbol alphabet, where |E‖ � 8 would be prohibitive

in practice. Therefore, prior to applying Stolcke’s algorithm, a process of symbol com-

pression is performed, where characters are mapped to a small number of symbols.
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In [66], a fixed mapping was defined, where contiguous sequences of lowercase letters

were mapped to the symbol a, uppercase letters were mapped to the symbol A, and so

forth. This mapping, however, was found to induce a degree of generalization that was

undesirable in some cases (i.e., the resulting HMM would generalize to the point where

it was unable to accurately classify samples).

Consequently, a new algorithm was devised to construct a dynamic mapping between

characters and symbols. This algorithm begins by first calculating the digram prob-

abilities of contiguous pairs of characters observed during the training phase. Once

a sufficient number of pairs have been observed – that is, the digram probability dis-

tribution has converged – a greedy criterion is used to distribute characters among a

fixed-size symbol set. Pairs of characters are processed in order of decreasing probabil-

ity, and assigned to different symbols. This heuristic results in the retention of a greater

amount of structural information, while at the same time reducing the computational

complexity of the generated HMM.

Detection phase. During the detection phase, the probability of an observed value

v is calculated by applying the Viterbi path approximation algorithm [126] to the cor-

responding symbol sequence. This well-known algorithm calculates the most likely

sequence of hidden states that can generate v, from which the probability of v can be

derived.

85



W. ROBERTSON DETECTION AND PREVENTION OF WEB-BASED ATTACKS

/articles /comments

/account/login /account/index

/index

(a) Example session structure for a user.
/account/index

/articles /comments

/account/login

/index

(b) Example session structure for an administrator.

/account/index

/comments

/account/login

/articles

/index

(c) Example session structure for a privilege escalation attack.

Figure 3.8: Example session structures. In (c), the dotted arc represents an anomalous
transition from the unprivileged resource /articles to the privileged resource
/account/index.
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3.3.5 Session model

As opposed to the previous models, which are exclusively focused on individual queries,

the session model m(sess) is applied to sequences of queries issued by HTTP clients. The

intuition behind this model is that paths through a web application typically possess a

regular structure. For instance, consider the example web application resources shown

in Figure 3.2. A user of the website might issue requests with the structure shown in

Figure 3.8a, where the index page is initially loaded, and a sequence of articles and

comments are viewed. The owner of the web application might have a session structure

shown in Figure 3.8b, where an administrative interface is accessed after having suc-

cessfully authenticated. On the other hand, the session structure shown in Figure 3.8c

might correspond to a successful privilege escalation attack, where a user gains direct

access to the administrative interface, bypassing the authentication resource.

Accordingly, a m(sess) is an adaptation of m(struct) to the domain of web application

resources, where resources are mapped to symbols. Additionally, several parameters of

the state merging criterion are modified in order to reduce the amount of generalization

induced by the algorithm. Though this necessarily increases the complexity of the

resulting HMM, this is compensated for by the fact that a single instance of m(sess) is

typically applied for each web application.

3.3.6 Document model

The models discussed to this point have been concerned solely with characterizing fea-

tures of HTTP requests. WEBANOMALY also includes a model to capture the normal
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behavior of documents generated by monitored web applications. Many documents

created by web applications conform to a regular structure. For instance, HTML doc-

uments often have common header and footer sections that do not change significantly

from page to page. Also, JSON documents that are returned to clients in response to an

AJAX request often follow a particular structure.

In the case that a successful attack has occurred, however, the structure of documents

generated by the web application can change drastically. If a data breach has occurred

as part of a SQL injection, for example, an HTML document might be returned that

contains a large table containing sensitive data such as credit card numbers or Social

Security numbers where none were present before. Or, in the case of a XSS reflection to

a client, client-side code might appear in the body of the document where none had been

previously observed. To detect such malicious behavior, WEBANOMALY incorporates a

document structure model m(doc) that attempts to characterize both the normal structure

of documents as well as the locations of sensitive information and client-side code

within documents.

Training phase. During the training phase, WEBANOMALY parses various types of

documents observed in response to requests issued by clients of monitored web ap-

plications. Supported document types currently include HTML, XHTML, XML, and

JSON documents. The resulting parse trees are then pruned according to the following

algorithm. For each tree, a depth-first search is performed for nodes that contain iden-

tifiably sensitive data, such as Social Security numbers or credit cards validated using

the standard Luhn check. In addition, any nodes that contain client-side code such as
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html

head body

script div

span

(a) Legitimate document.

html

head body

script div

span script

(b) Document containing reflected XSS attack.

Figure 3.9: Document structure models, with security-relevant nodes highlighted. In (a), the
legitimate document contains client-side code in the <script/> tag, and sensitive
data in the <span/> tag. In (b), a malicious <script/> tag has been inserted into
the body of the document.

HTML <script/> tags or DOM event handlers are identified. These security-relevant

nodes, and all parent nodes to the root of the document, are retained; the remaining

nodes are discarded. Additionally, the number of nodes containing sensitive data is

recorded. For each successive parsed response corresponding to a given resource, the

partial tree of security-relevant nodes for a response are merged into the existing tree.

Also, the mean and variance of the number of nodes containing sensitive data is in-

crementally computed. The merged tree, including node annotations corresponding

to security-relevant features, and the sensitive data statistics comprise m(doc). As for

the previously-described models, when this merged tree converges to a fixed point, the

model switches to the detection phase.
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Example structures for HTML documents are shown in Figure 3.9. In Figure 3.9a,

a partial tree has been constructed to indicate the security-relevant nodes <script/>

and <span/>. An example of a reflected XSS attack is shown in Figure 3.9b, where a

malicious <script/> node has been inserted into the body of the document.

Detection phase. Given an observed document v, the probability of its partial tree

obtained as described above is given by

Pr (v) = wc

(
1− mc

nc

)
+ wd

σ2
d

(nd − µd)
2 ,

where mc is the number of client-side code instances not found in m(doc); nc is the total

number of instances of client-side code; nd is the total number of nodes containing

sensitive data; µd and σ2
d are the mean and variance, respectively, of nodes containing

sensitive data; and wc, wd are weights such that wc, wd ≥ 0 and wc + wd = 1.

3.3.7 Model composition

Each preceding model outputs a probability score on the interval [0, 1] that indicates the

likelihood of a sample given the model. Since, however, sets of models are generally

applied to features of web applications, it is necessary to combine the scores from a pro-

file’s constituent models in order to derive a final probability score. In many ensemble

learning methods, which WEBANOMALY could be considered to employ, a simple ma-

jority voting scheme or weighted summation of the model outputs is performed.3 These

3For instance, a naı̈ve Bayesian network is an example of such a model combination.
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approaches, while lightweight, do not take into account complex interdependencies that

exist between each of the models comprising a profile.

Therefore, WEBANOMALY instead applies non-naı̈ve Bayesian networks to compose

the outputs of multiple models [65]. Bayesian networks are directed acyclic graphs

(DAG) that allow for probabilistic reasoning under uncertainty. The DAG is composed

of nodes representing discrete random variables. Each node contains the states of the

random variable it represents and a conditional probability table (CPT). A CPT spec-

ifies the joint probability distribution of a node’s random variable given the random

variables of the node’s parents. Links between nodes indicate causal dependence; that

is, the variable represented by a child node is causally dependent upon the variables rep-

resented by the node’s parents. Nodes that are unconnected are causally independent.

Additionally, nodes comprising a Bayesian network are either evidence nodes, which

indicate some measurable value, or are hypothesis nodes, which correspond to values

that cannot directly be observed. Bayesian networks allow one to obtain the probability

of the hypothesis variable given the evidence. In our application, the evidence nodes

are the outputs and various states of the models comprising a profile, and the hypothesis

node indicates whether an attack has been detected given the state of the models.

Note that naı̈ve Bayesian networks have a tree structure with the hypothesis node at

the root and a set of evidence nodes at a depth of 1. This structure corresponds to a

weighted summation of the individual evidence nodes. The Bayesian networks used by

WEBANOMALY contain causal links between evidence nodes to indicate model inter-

dependence, and are therefore not equivalent to a weighted summation.

Figure 3.10 presents an example Bayesian network used by WEBANOMALY to classify
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Attack?

Token
model
score

Integer
model
score

Char
model
score

HMM
score

Token
model
conf

Integer
model
conf

Char
model
conf

HMM
conf

Figure 3.10: Example Bayesian network model composition for a parameter profile. In this ex-
ample, model probability scores and confidence values are represented by evidence
nodes. The highlighted hypothesis node represents the probability of an attack
given the evidence. Note that the structure model probability score is dependent
upon both the confidence of the HMM as well as of the character distribution.

parameter values. Here, evidence nodes are instantiated for each model probability

score and confidence value comprising a parameter profile. The highlighted hypothesis

node represents the probability of an attack given the evidence. Note that the struc-

ture model probability score is dependent upon both the confidence of the HMM as

well as of the character distribution. With the use of Bayesian networks, inter-model

dependencies such as the one shown are easily modeled in a systematic way.
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3.4 Conclusions

WEBANOMALY employs a black-box approach to protect vulnerable web applications.

Sets of statistical models, known as profiles, are applied to various features of web

applications throughout the hierarchy of the abstract model shown in Figure 3.1. Addi-

tionally, Bayesian networks are used to probabilistically reason about the low-level

model outputs in a strong, theoretically sound way. Using these techniques, WE-

BANOMALY is able to detect attacks with high accuracy and low performance overhead.

Achieving these results, however, required the author to overcome several fundamental

challenges. The following chapters of this dissertation introduce each of these chal-

lenges in turn and how they were addressed.
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Chapter 4

Clustering and Characterization of

Anomalies

As Axelsson demonstrated in a seminal paper [4], the false positive rate produced by

an anomaly detection system is the dominating factor as to the usability of that system

in practice. Put succinctly, if the false positive rate of an anomaly detector is too high,

then, as a consequence of the low prior probability of attacks, the posterior probability

that an alert represents a true attack is low. Therefore, security researchers have focused

much effort on reducing the false positive rate of intrusion detection systems. Due to the

complexity of modeling features of modern software behavior, however, some amount

of false positives is inevitable. Indeed, the relatively high rate of false positives pro-

duced by anomaly-based IDSs remains a major obstacle to their widespread adoption.

A secondary problem relating to anomaly detection systems is that, even assuming that
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an alert does in fact represent a true positive, an alert generated by an anomaly detection

system does not provide a significant amount of actionable information. Misuse-based

systems can typically provide extremely fine detail as to the type of vulnerability and

attack that an alert corresponds to. In contrast, because anomaly-based systems do

not explicitly model malicious behavior, their analysis of the nature of an anomaly is

limited to generic statements such as “parameter value too long” or “parameter value

contains bad character(s).”

As a result, a major area of research regarding WEBANOMALY has been on addressing

these two problems. Several features of the system that have already been discussed,

such as the composition of multiple models for a given feature, are intended to address

the issue of false positive reduction. This chapter, however, presents a complementary

approach to both reducing the false positive rate of an anomaly detector as well as

increasing its ability to analyze malicious behavior: anomaly signatures.

The key intuition behind the concept of anomaly signatures is that similar anomalies

are likely to represent similar attacks in the case of true positives, or to represent similar

misclassifications in the case of false positives. For instance, a set of models may share

a common defect, such that false positives are generated in the same way in response

to specific events. Alternatively, an attacker may probe a website for a specific vulner-

ability, causing a group of related alerts. By clustering similar anomalies, it is therefore

possible to reduce the number of alerts, and thereby false positives, reported to security

administrators. Additionally, through a process of attack class inference, these groups

of anomalies are labeled according to the type of attack they represent, significantly
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Figure 4.1: Architectural overview of WEBANOMALY, with anomaly characterization and clus-
tering components highlighted.

improving the explanatory power of the resulting anomaly detection system.1

4.1 Architecture

Figure 4.1 presents an overview of the high-level architecture of WEBANOMALY. Many

of the components comprising the system have already been introduced in Section 3.2.

In the following, however, we discuss the high-level interactions between components

that are responsible for anomaly clustering and characterization. A detailed discussion

of the operation of each component is discussed in the following sections.

4.1.1 Anomaly clustering

Anomalies that have been generated by the anomaly detection component are for-

warded to the anomaly clustering component. This component maintains a database of

1An earlier version of this work was presented in [106].
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previously generated anomaly signatures, against which new anomalies are compared.

If a match is found, the anomaly is associated with the existing anomaly signature.

Otherwise, the anomaly is passed to subsequent components for further processing.

4.1.2 Anomaly signature generation

Anomalies that are not matched against any existing anomaly signature are forwarded

to the anomaly signature generation component. The task of this component is to

construct a generalized anomaly signature that is based on parameters extracted from a

particular anomaly. The generated signature is used to match further manifestations of

similar anomalies.

Note that a distinction must be made between misuse signatures and anomaly signa-

tures. In our nomenclature, a misuse signature describes a specific instance of a known

attack, while an anomaly signature consists of a generalized description of a deviation

from models of normal behavior that is dynamically extracted from an anomaly.

4.1.3 Attack class inference

In many cases, an anomaly signature can be further classified as belonging to one of

several broad, generic classes of known attacks against web-based applications. In

our system, these classes curently include buffer overflows, cross-site scripting (XSS),

SQL injection, command injection, and directory traversal. The task of the attack class

inference component is to select a label representing the type of attack that an anomaly
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represents. This label is then applied to the corresponding anomaly signature.

This process of attack classification results in semantically rich anomaly alerts that are

more informative to security administrators and web application developers. These

alerts not only pinpoint the vector through which the application is being attacked (e.g.,

a specific resource and parameter), but, in addition, identify the nature of the attack

as well. This can assist the security administrator or application developer in more

quickly mitigating the vulnerability, as the nature of the attack itself generally suggests

the required steps for remediation.

4.2 Anomaly clustering and signature generation

The central object of the anomaly clustering and characterization process is the anom-

aly signature. An anomaly signature is composed of a set of parameterized models

corresponding to the profile that generated an anomaly. That is, when a profile gen-

erates an anomaly, the parameters for each of its constituent models are extracted to

create an anomaly signature. As an example, consider a profile for a parameter to a

web application resource

c =
〈
m(tok), m(int), m(len), m(char), m(struct)〉 .
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Let p
(
m(·)) be a set of parameters associated with a given model. Then, we define an

unlabeled anomaly signature for parameter profiles to be

g =
〈
p
(
m(tok)) , p

(
m(int)) , p

(
m(len)) , p

(
m(char)) , p

(
m(struct))〉 .

Anomaly signatures for session and document models are defined similarly.2

In order to cluster anomalies, a similarity measure must be defined between anomaly

signatures. To that end, we define an anomaly signature distance metric between two

anomaly signatures g1, g2 as

dg =
1

W

P∑
i=1

wi · dm(·)

(
p
(
m

(·)
1,i

)
, p

(
m

(·)
2,i

))
,

where dm(·) is a model-specific similarity measure, m
(·)
1,i is the ith model of signature

g1, wi is a weight associated with model m
(·)
j,i, W =

∑P
i=1 wi, and P is the number of

model parameter sets contained in g1, g2.

The following sections describe the individual similarity measures dm(·) for each type

of model.
2Note that the anomaly signature generation process is not driven by examples of known attacks, but

rather by the extraction of parameters from a set of anomaly models. Therefore, these anomaly signatures
are not derived from (or associated with) a specific exploitation technique.
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4.2.1 Token model

The token model determines the probability of an observed value v given a learned

token set V as

Pr (v) =


0 if v /∈ V

1 otherwise
.

During the signature generation phase, an anomalous value v is extracted such that

p
(
m(tok)

)
= {v}. Consequently, the distance metric between token model parameters

is given by

dm(tok) = lex (v1, v2) ,

where lex is a function to calculate lexicographic similarity between sequences of char-

acters normalized to the interval [0, 1]. Note that lex can be tuned to achieve different

levels of sensitivity to variations in the values of anomalous tokens. For instance, lex

may use simple metrics such as the Hamming or Levenshtein distances. Alternatively,

a higher-level phonetic distance such as the Soundex algorithm may be used.

In the degenerate case, lex always returns true and the resulting metric would consider

all tokens not contained in V to be equivalent. In the current implementation, however,

lex is a simple string equality test.
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4.2.2 Integer model

The integer model represents the unknown distribution of a set of integers as the sample

mean µ and variance σ2, and the probability of an observed value v is

Pr (|x− µ| − |v − µ|) < Pr (v) =
σ2

(v − µ)2 .

These two values, as well as the anomalous value itself, are extracted as model pa-

rameters – that is, p
(
m(int)

)
= {v, µ, σ2}. The distance metric between integer model

parameters is then defined as

dm(int) =

∣∣∣∣ σ2

(v1 − µ)2 −
σ2

(v2 − µ)2

∣∣∣∣ .

4.2.3 Character distribution model

The character distribution model stores the idealized character distribution (CD) of a

given feature. During the detection phase, it applies the Pearson χ2 test to determine

the probability of an observed sample v. If the observed distribution is found to be

anomalous, the parameters of the character distribution model are extracted in one of

two ways, depending on the nature of the anomaly.

If the observed character distribution exhibits a sharp drop-off indicating the dominance

of a small number of characters, a configurable number n of the character values that

101



W. ROBERTSON DETECTION AND PREVENTION OF WEB-BASED ATTACKS

dominate the distribution are extracted. That is, the set

p
(
m(char)) = {(c1, f1) , (c2, f2) , . . . , (cn, fn)}

is constructed, where ci is the ith dominating character value and fi is the corresponding

relative frequency. Then, the distance metric between character distribution parameters

is

dm(char) =

(
1− |n1 − n2|

|n1 + n2|

) max(n1,n2)∑
i=1

|f1,i − f2,i| .

If, however, the observed character distribution is close to uniform, the distance metric

becomes a test for uniformity. That is,

dm(char) =

max(n1,n2)∑
i=1

|f1,i − f2,i| .

Note that these two different techniques are necessary to accomodate common attacks

that manifest themselves as character distribution anomalies with disparate characteris-

tics.

4.2.4 Structure model

Recall that the structure model learns a probabilisitic grammar that can generate a su-

perset of the feature values observed during the training phase. If an observed value v is

determined to be anomalous, the symbol sequence corresponding to v is first extracted.
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Let s denote such a sequence. Then, a linear scan of s is performed to identify whether

any of the symbols were underivable – that is, whether, at any point i in the sequence,

a transition was not available to a state emitting si+1. If one is found, the sequence is

truncated to obtain s′ = {s1, . . . , si+1}. Here, the use of a sequence prefix is motivated

by the observation that repeated attacks against a particular web application feature of-

ten exhibit similar prefixes in the malicious values comprising the attacks. Otherwise,

if no such symbol can be found, let s′ = s. The parameter set for the structural model

is then p
(
m(struct)

)
= {s′}.

Accordingly, we define the distance metric between structure model parameters as

dm(struct) = lex (s′1, s
′
2) ,

where lex is a lexicographic comparison function as in the case of the token model.

4.2.5 Session model

The session model characterizes legitimate flows through a web application by consid-

ering sessions as sequences of resource symbols. Then, legitimate flows are represented

by constructing a probabilistic automaton that can generate the flows observed during

training, as well as similar flows. This approach is similar to that employed by the

structure model. In this case, however, the prefix of a malicious flow is generally less

interesting than the transition to a protected resource that often exemplifies the type of

attack a session model is designed to detect.
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Therefore, if an observed session flow v is observed to be anomalous, the correspond-

ing symbol sequence s is extracted as in the case of the structure model. In contrast,

however, if a linear scan of s identifies an underivable symbol si+1, only the pair of re-

sources representing the malicious transition is extracted; that is, we let s′ = {si, si+1}.

If, on the other hand, no such malicious transition is found, then s′ = s as in the case of

the structure model. The parameter set for the session model is then p
(
m(sess)

)
= {s′}.

Similarly, we define the distance metric between session model parameters as

dm(sess) = lex (s′1, s
′
2) .

4.2.6 Document model

Recall that the document model learns a superset of legitimate partial parse trees of

a variety of documents, where only nodes that are deemed security-relevant, and the

parent nodes to the root of the document, are retained. When an observed document v

is determined to be anomalous, a subgraph of its partial parse tree is extracted, where

only those security-relevant nodes and their parents are retained. Let v′ denote this

sub-graph. Then, the parameter set for document models is p
(
m(doc)

)
= {v′}.

To derive a similarity metric between document model parameter sets, we perform a

fuzzy subgraph isomorphism test by determining the number of distinct paths from the

root to a security-relevant node match between two trees v′1, v
′
2. Let m be the number

of paths not found in both trees, and let n be the total number of distinct paths in both
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trees. Then, the distance metric between document model parameters is simply

dm(doc) = 1− m

n
.

4.3 Attack class inference

While providing the ability to detect previously unknown attacks, anomaly detection

is, in general, not able to provide a concrete explanation of what an attack represents

with respect to the target application. This is a general limitation of anomaly detection

approaches and often confuses security administrators when they have to analyze alerts

that state only that some feature does not match established profiles.

We have observed, however, that many well-known classes of attacks share common

high-level representations. Therefore, whenever an anomaly is detected, various tech-

niques can be used to attempt to infer the type of an attack and provide additional

information to security administrators.

Consequently, WEBANOMALY includes an attack class inference component to deter-

mine the class of attack that an anomaly generated by the system represents. Here, ad

hoc heuristics are used to classify anomalous values as belonging to one of several cate-

gories of attacks. These categories include buffer overflows, cross-site scripting (XSS),

SQL injection, and directory traversal.

As noted in Section 4.1.2, the attack class inference process is fundamentally different

from the matching of “traditional” intrusion detection signatures. This is due to the fact
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that the inference process is only applied to values that have already been identified as

anomalous, while misuse signatures are applied to the entire event being analyzed. As a

consequence, the attack class inference technique can be less precise without incurring

the risk of classifying benign portions of an event as malicious. Additionally, we note

that attack inference is independent of the derivation of anomaly signatures, and does

not always produce a definitive classification.

In the following, we discuss each of the heuristics used to label an anomaly as belonging

to one of a set of attack classes. Once a set of heuristics have been applied, the labeled

anomaly signature with label l is denoted by

g′ =
〈
p
(
m(tok)) , p

(
m(int)) , p

(
m(len)) , p

(
m(char)) , p

(
m(struct)) , l

〉
.

4.3.1 Directory traversal

Directory traversal attacks are essentially attempts to gain unauthorized access to files

that are not intended to be exposed by a web application or web server. These attacks

are accomplished by escaping the web server document root using “..” to reference

parent directories. These attacks are somewhat unique in that a small set of characters

is involved in their execution, namely “.” and “/”. Accordingly, the heuristics for de-

tecting directory traversals are only activated if either the character distribution returns

a dominating character set C where C
⋂
{., /} 6= ∅, or if the structural inference model

returns a violating character-compressed string with a final underivable character of

“.” or “/”. To infer the presence of a directory traversal attack, the heuristic scans
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the anomalous feature for a substring derivable by the regular grammar represented by

(/|\.\.)+.

For example, suppose that an anomaly is generated from a parameter value of “cat

../../../../../etc/shadow”. In this case, the character distribution model might

identify an anomalous number of “.” and “/” characters, and, in addition, the structural

model might detect a violation of the attribute structure. As a consequence, the direc-

tory traversal attack class inference heuristic is applied to the anomalous attribute value.

The heuristic determines that the value matches the regular expression (/|\.\.)+, and

the attack is labeled as a directory traversal attack.

4.3.2 Cross-site scripting

XSS attacks involve the injection of client-side code, such as JavaScript, into gener-

ated documents. Therefore, evidence of such an attack might consist of fragments of

client-side code contained in parameter values. Because of the insertion of specific

HTML tags or attributes as well as the use of characters common in browser scripting

languages, this type of attack often results in a violation of the learned structure and

character distribution of a parameter.

Consequently, the XSS heuristic is applied to an anomalous attribute value if any of

these models are involved in the initial detection step. The heuristics currently used for

this class include a set of scans for common syntactic elements of the JavaScript lan-

guage or HTML fragments (e.g., <script/>, DOM event handler attributes, or angle

brackets under several encodings).
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4.3.3 SQL injection

SQL injection attacks consist of malicious modifications to SQL queries, usually by

escaping an input to a query parameter that allows an attacker to execute unauthorized

SQL commands. Because of the insertion of these escape characters, SQL injection

attacks generally result in the violation of the learned structure of attribute values.

Therefore, the heuristic specific to SQL injection are activated if the structure model

detects an anomaly. The heuristic then scans the anomalous value for common SQL

language keywords and syntactic elements (e.g., SELECT, INSERT, UPDATE, DELETE, ’,

or --).

4.3.4 Buffer overflows

Buffer overflow attacks typically involve sending a large amount of data that overflows

an allocated buffer, allowing the attacker to overwrite control flow information or appli-

cation data. Buffer overflow attacks against web applications typically manifest them-

selves as attribute values that deviate significantly from established profiles of normal

behavior. Therefore, the heuristic for inferring the presence of a buffer overflow attack

will be activated if any of the character distribution, length, or structure models report

an anomaly. The heuristic performs a simple scan over the anomalous value for binary

values (i.e., ASCII values greater than 0x7f), which are typical of basic buffer overflow

attacks. More sophisticated classification techniques could be substituted, however,

with associated tradeoffs in performance [121].
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4.4 Evaluation

The set of components responsible for anomaly signature generation, anomaly cluster-

ing, and attack class inference were evaluated in terms of false positive rate reduction

and attack classification accuracy. All experiments were conducted on a Pentium IV

1.8 GHz machine with 1 GB of RDRAM.

4.4.1 False positive rate reduction

In order to evaluate the false positive rate of WEBANOMALY, data sets from two uni-

versities, TU Vienna and UC Santa Barbara, were analyzed by the system. To this end,

a client was written to replay the requests to a honeypot web server while a misuse de-

tection system monitored the network link between the client and server. All requests

corresponding to attacks detected by the misuse detector were removed from the data

sets. Also, since many of the attacks were intended for Microsoft IIS while the data sets

corresponded to Apache web servers, many attacks were removed simply by removing

requests for non-existent documents identified by the 404 HTTP return code.

WEBANOMALY was configured with an initially empty anomaly signature set, and de-

fault learning, detection, and similarity threshold were used. The learning phase was

performed over the first 1,000 examples of a specific web application attribute, at which

point the attached profile switched into the detection phase. During this phase, any

alerts reported by the system were flagged as false positives, under the assumption that

the data set was free of attacks. The results of the experiment are shown in Table 4.1.3

3We note that the fixed training length used in this experiment is an artifact due to the use of an earlier
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Data set Queries False positives FPR Clusters Cluster FPR

TU Vienna 737,626 14 1.90× 10−5 2 3.00× 10−6

UCSB 35,261 513 1.45× 10−2 3 8.50× 10−5

Table 4.1: False positive results for both raw and clustered anomalies.

During analysis of the TU Vienna data set, the detection system produced 14 alerts over

737,626 queries, resulting in a low baseline false positive rate. We believe this attests to

the ability of the anomaly detection models to accurately capture the “normal” behavior

of attribute values during the learning phase. The addition of the anomaly clustering

components, however, improved this even further by allowing the system to collapse

14 alerts into 2 clusters. When these clusters were examined, we found that each of

the groups indeed represented related alerts. For the first group, an IMAP mailbox

was repeatedly accessed through the imp webmail application, which had not been

observed during the training phase. In response, the token finder generated an alert,

and the resulting anomaly signature allowed the system to cluster the alerts together

accordingly.4 For the second cluster, developers of a custom web application specified

invalid values to an attribute during test invocations of their program. In this case,

the attribute length model detected an anomaly, and the resulting anomaly signature

correctly grouped subsequent variations on the input errors with the first instance.

The results of the clustering components during analysis of the UC Santa Barbara data

set were even more dramatic. The detection system reported 513 alerts over 35,261

queries, resulting in a false positive rate several orders of magnitude greater than the

version of WEBANOMALY. Additionally, we note that the baseline false positive rate for the system has
improved considerably since this experiment was conducted.

4Incidentally, this would be a reasonable case to retrain the associated models, in order to incorporate
the characterstics of the legitimate value into the attribute profile.
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TU Vienna data set. Due to our anomaly clustering technique, however, the 513 alerts

were partitioned into 3 clusters. Manual inspection of the aggregated alerts demon-

strated that, as in the case of the TU Vienna data set, the groups were comprised

of related alerts. The first cluster was composed of a series of anomalous queries

to the whois.pl user lookup script, which expects a name attribute with a valid user-

name as the value. In this case, the grouped alerts all possessed the name attribute

value teacher+assistant++advisor, possibly as the result of a bad hyperlink ref-

erence to the script from elsewhere on the department website. In this case, the char-

acter distribution model detected an anomalous number of “a” characters. The second

cluster was identical in nature to the first, except that the name argument value was

dean+of+computer+science. For this cluster, the character distribution detected an

anomalous number of “e” characters. The final cluster was composed of several alerts

on an optional argument to the whois.pl script named showphone, which takes either a

yes or no value as an argument. In this case, the alerts were attributed to an uppercase

YES value, which the token finder correctly identified as anomalous.

4.4.2 Attack inference

To evaluate the effectiveness of the attack inference heuristics, a number of attacks

comprising the different attack classes that the heuristics are intended to classify were

injected into the TU Vienna data set. This data set was chosen because legitimate in-

vocations of the vulnerable applications were previously present in the data. Ten vari-

ations of each distinct attack were injected throughout the data set, utilizing mutation

techniques from the Sploit framework [124]. WEBANOMALY was configured with the
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Attack Alerting Models Classification Accuracy

csSearch Integer, Char. Distribution XSS 100%
htmlscript Integer, Structure Directory traversal 100%

imp Integer, Char. Distribution XSS 100%
phorum Token, Integer, Char. Distribution Buffer overflow 100%
phpnuke Integer, Structure SQL injection 100%
webwho Integer None 100%

Table 4.2: Attack classification results.

exact set of parameters as in the previous experiment. The results of the experiment are

shown in Table 4.2.

From the experimental results, we first note that all instances of each attack were de-

termined to be anomalous by WEBANOMALY. Additionally, in each case, all instances

of a given attack were classified into a single cluster. Finally, each of the clusters

were correctly characterized by the attack inference heuristics. The only attack that

was not classified as belonging to a known class of attacks was the webwho attack.

This, however, we consider to be correct behavior, as the webwho attack exploited an

application-specific input validation error for which the system includes no heuristics.

It is important to note, however, that the anomaly was still detected, and further varia-

tions were clustered correctly. Indeed, although a variety of models provided the initial

decision that the request was anomalous, in each case the anomaly signature generation

procedure was able to match subsequent variations of the same attack. We believe that

this demonstrates the power of our technique with respect to its ability to group similar

anomalies.
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Data set Requests Request rate Analysis Time Analysis Rate

TU Vienna 737,626 0.107095 req/s 934 s 788.06 req/s
UCSB 35,261 0.001360 req/s 64 s 550.95 req/s

Table 4.3: Detection performance results.

4.4.3 Performance

The performance of the detection system was evaluated in terms of both CPU time and

memory usage when run on both attack-free data sets from TU Vienna and UC Santa

Barbara. Both metrics are important for the real-world applicability of WEBANOMALY,

since, in the ideal case, it would be run in real-time on hardware available to most

website operators. The same parameters used from the previous experiments were used

for this experiment. Ten runs were performed for each data set, and the elapsed times

were averaged. The results of the time required for analysis by the system are displayed

in Table 4.3.

For both data sets, WEBANOMALY was able to maintain a processing rate orders of

magnitude above the rate of requests processed by the respective web servers. For

instance, in the case of the TU Vienna data set, the request analysis was performed

approximately 7,000 times as quickly as actual requests were processed. From this, we

conclude that for many sites, the detection system is capable of performing its analysis

in real-time.

In addition to CPU usage, an analysis of the memory utilization of the system was

performed. The results of this evaluation showed that WEBANOMALY did not require

substantial memory resources once the profiles were established.
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4.5 Conclusions

This chapter has presented an approach to addressing two limitations of anomaly-

based intrusion detection systems. First, anomaly signatures are used to cluster similar

anomalies that are likely to represent groups of either true positives or true negatives.

This reduces the burden on security administrators in dealing with the high volumes of

false positives that anomaly detectors can potentially produce. Secondly, attack class

inference techniques are used to label anomaly clusters, allowing anomaly detectors to

provide additional information as to the type of attacks that anomalies represent. Taken

in combination, these techniques significantly increase the effectiveness of anomaly de-

tection systems in practice, by reducing the negative effects of false positives as well as

providing guidance in terms of vulnerability mitigation.

Though false positive reduction and the lack of explanatory power are important is-

sues that must be addressed, more challenges to the successful deployment of anomaly

detectors remain. The next chapter discusses an approach to dealing with one such

challenge: the scarcity of training data.
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Chapter 5

Addressing Training Data Scarcity

The models used by anomaly detection systems to characterize normal behavior are

central to the accuracy of the system. Approaches to manually specifying anomaly

models do exist; this, however, is a tedious, labor-intensive, and error-prone process.

Therefore, most research has instead focused on applying machine learning techniques

to automatically derive models of normal behavior from unlabeled training data. Anom-

aly detectors that incorporate such learning techniques obviate the tedious and error-

prone task of creating specifications, and, additionally, are able to adapt to the particular

characteristics of the local environment.

In an ideal case, a learning-based web anomaly detection system is deployed in front of

one or more web applications hosted at a site, and, in a completely automated fashion,

the IDS learns the normal interaction between users and the applications. Once enough

training data has been analyzed and the profiles for the protected applications have been
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established, the system switches to the detection phase, and it is able to detect attacks

that represent anomalies with respect to normal application usage; WEBANOMALY ex-

emplifies this approach.

Learning-based anomaly detection provides the significant benefit of requiring only

a modest initial configuration effort to provide effective custom attack detection. This

feature is extremely attractive to security administrators, who have neither the resources

nor the skills to manually analyze legacy web applications composed of hundreds of re-

sources. Because of this, several commercial web application firewalls incorporate lim-

ited forms of learning-based anomaly detection to supplement more traditional misuse-

based techniques [15, 31, 11].

In addition to the problem of false positives that has been discussed in Chapter 4, an-

other limitation of anomaly detection that is well-known in the research community is

the difficulty of obtaining high-quality training data. Learning-based anomaly detec-

tors critically rely upon the quality of the training data used to construct their models.

One requirement of training data sets is that they must be free from attacks. Otherwise,

the resulting models will be prone to false negatives, as attack manifestations will have

been learned as normal. To address this, several works propose approaches to sanitizing

training data sets [29, 20, 58].

Another well-known limitation, and one that can be seen as the dual of the attack-free

requirement, is that training data sets should completely capture the normal behavior of

the protected resources. Unfortunately, to our knowledge, no proposals exist that satis-

factorily address the problem. In particular, our experience with the deployment of web

application anomaly detectors in real-world environments suggests that the number of
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web application component invocations is non-uniformly distributed, where relatively

few components dominate, and the remaining components are accessed relatively in-

frequently. Thus, for those components, it is often impossible to gather enough training

data to accurately model their normal behavior. We informally refer to the components

that receive insufficient accesses as the “long tail” of a web application.1 In summary,

components that are infrequently accessed lead to undertrained models – that is, models

that do not accurately characterize normal behavior accurately.

This chapter addresses the problem of undertrained models by exploiting natural sim-

ilarities among all web applications. The key observation is that the values of the pa-

rameters extracted from HTTP requests can generally be categorized according to their

type, such as an integer, date, or string. Moreover, our experiments demonstrate that

parameters of similar type induce similar models of normal behavior. Taken together,

these results can be leveraged to supplement a lack of training data for one web ap-

plication component with similar data from another component that has received more

requests.

5.1 Training data scarcity

To introduce the problem of training data scarcity, we will refer to the abstract model of

a web application initially discussed in Section 3.1 and shown in Figure 3.1. Readers

familiar with this material can skim until Section 5.1.1.
1Note that we refer to the long tail in reference to a Pareto distribution, and that this does not neces-

sarily imply a power law distribution of these accesses.
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Ri =



ri,1 = /index,

ri,2 = /article,

ri,3 = /comments,

ri,4 = /comments/edit,

ri,5 = /account/login,

ri,6 = /account/index,

ri,7 = /account/password


Figure 5.1: Resources comprising an example web application blog.example.com.

Recall that a set of web applications A can be decomposed into a set of resource paths,

or components, R and named parameters P . A web application receives sequences of

requests Q = {q1, q2, . . .} issued by web clients, where each query can be represented

by the tuple qi = 〈ai, ri,j, Pq〉. Here, ai is a web application, ri,j is a resource path

associated with the web application, and Pq ⊆ Pi,j is a subset of possible parameter

name-value pairs that ri,j accepts. The web application generates a sequence of re-

sponses to queries S = {s1, s2, . . .}, where a one-to-one mapping exists between each

pair (qi, si). Each response can be represented by the tuple si = 〈Kq, dq〉, where Kq is

a set of cookies to be instantiated or cleared on the client, and dq is a document (e.g.,

HTML, JSON) to be interpreted by the client.

A web application ai = blog.example.com might be composed of the resources shown

in Figure 5.1. In this example, resource path ri,7 might take a set of parameters as part

of the HTTP request such as Pi,7 = {pi,7,1 = oldpw, pi,7,2 = newpw}. A client might
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ca1

ca1,r1 · · · ca1,ri · · · ca1,rn

ca1,r1,p1 ca1,r1,p2 · · · ca1,ri,pj
ca1,ri,pj+1 · · · ca1,rn,pm−1 ca1,rn,pm

Figure 5.2: The hierarchy of models constructed by WEBANOMALY. Session profiles are cre-
ated across the entire web application a1 at the root of the hierarchy. Document
profiles are created for each unique resource ri. Parameter profiles are created for
each unique resource and parameter (ri, pj).

issue a query to ri,7 of the form

q =


blog.example.com,

/account/password,

{(oldpwd, foo) , (newpw, bar)}


.

The web application might issue a response of the form s = {∅, “<html> . . . ”}, indi-

cating that no cookies are to be set, and an HTML document is to be rendered.

During the initial training phase, the anomaly detection system learns the behavior of

the monitored web applications in terms of models. The hierarchy of models created

by WEBANOMALY is presented in Figure 5.2, and closely mirrors the abstract model

of web applications. At each node of the abstract model, a set of related models is

instantiated to model various features of that node. These model sets are known as
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profiles, and are represented by a tuple of models

c =
〈
m

(·)
1 , m

(·)
2 , . . . ,m(·)

n

〉
.

Specifically, for each parameter pi,j,k, a parameter profile is created that can be repre-

sented by the tuple

cpi,j,k
=

〈
m(tok), m(int), m(len), m(char), m(struct)〉 ,

where m(tok) is the token model, m(int) is the integer model, m(len) is the string length

model, m(char) is the character distribution model, and m(struct) is the structure model.

For sequences of HTTP requests Q = {q1, q2, . . .} from a given client, the profile

cai
=

〈
m(int), m(sess)〉

is applied, where m(sess) is the session model.

Finally, the structure of responses ri,j generated by the monitored web applications is

characterized by the profile

cri,j
=

〈
m(doc)〉 ,

where m(doc) is the document model.

m(tok) models parameter values as a small, finite set of legal tokens. m(int) and m(len)

describe legitimate distributions for integers and string lengths, respectively, using the
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non-parametric Chebyshev inequality. m(char) models character strings as a ranked fre-

quency histogram, or Idealized Character Distribution (ICD), that is compared using

the χ2 test. m(struct) models sets of character strings by inducing a Hidden Markov

Model (HMM). The HMM encodes a probabilistic grammar that can produce a su-

perset of strings observed in a training data set. m(sess) adapts a combination of the

integer model and structure model to capture the normal sequences of request invoca-

tions expected by the modeled web application, as well as the inter-arrival times of the

individual queries. Finally, m(doc) models the normal structures of documents generated

by the monitored web applications, as well as the incidence and positions of sensitive

data and client-side code within those documents. For more details on the models and

how they are constructed, please refer to Section 3.3.

After converging to a fixed point, individual models switch to the detection phase. Here,

observed values are compared to profiles to determine how well each value fits the

learned models. Bayesian networks are then used to compute an aggregated anomaly

score on the interval [0, 1]. If the probability of a value is less than a certain threshold,

an anomaly is generated.

5.1.1 The problem of non-uniform training data

Because anomaly detection systems dynamically learn specifications of normal behav-

ior from training data, it is clear that the quality of the detection results critically relies

upon the quality of the training data. As mentioned previously, one requirement typi-

cally imposed upon training data is that it should be attack-free; that is, it should not
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contain traces of malicious activity that would induce the resulting models to consider

malicious behavior as normal. A number of solutions have been proposed to address

this issue; for instance, the use of ensemble learning techniques [20]. Another re-

quirement that training should satisfy is that it should accurately represent the normal

behavior of the modeled features. In a sense, this requirement is the dual of the previous

one: training data should completely contain all relevant aspects of normal behavior.

The difficulty of obtaining sufficient amounts of training data to accurately model web

applications is intuitively clear. We are, however, not aware of any solutions that can ad-

dress this issue when sufficient training data is not available. Typically, anomaly-based

detectors cannot assume the presence of a testing framework that can be leveraged to

generate realistic training data that exercises the web application in a safe, attack-free

environment. Instead, the anomaly detection system is deployed in front of live web

applications with no a priori knowledge of the applications’ components and their be-

havior.

In the case of low-traffic web applications, problems arise if the rate of client requests

is inadequate to allow models to train in a timely manner. However, even in the case

of high-traffic web applications, a large subset of resource paths can fail to receive

enough requests to adequately train the associated models. This phenomenon, which

is frequently observed in real-world data sets, is a direct consequence of the fact that

requests issued by web clients often follow a non-uniform distribution. To illustrate this

point, Figure 5.3 plots the normalized cumulative distribution function of web client

resource path invocations for a variety of real-world, high-traffic web applications.2

2Details on the source of this data are provided in Section 5.3.
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Figure 5.3: Web client resource path invocation distributions from a selection of real-world web
applications.

Although several applications have an approximately uniform client access distribution,

a clear majority exhibits highly skewed distributions. Indeed, in many cases, a large

percentage of resource paths receive a comparatively minuscule number of requests.

Returning to the example resources shown in Figure 5.1, assuming an overall request

volume of 500,000 requests per day, the example resource path set might result in the

client access distribution shown in Figure 5.4.

Clearly, profiles for parameters to resource paths such as /article will likely receive

sufficient training data. This is not true, however, for profiles associated with paths

such as /account/password. Further exacerbating the situation is the fact that a client

request does not necessarily include all possible parameters.
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/article = 475, 000

/comments = 15, 000

/comments/edit = 9, 000

/account = 900

/account/password = 100

Figure 5.4: Example non-uniform web application request distribution.

The unfeasibility of an anomaly detection system to accurately model a large subset of

a web application is problematic in itself. We argue, however, that the impact of the

problem is magnified by the fact that components of a web application that are infre-

quently exercised are also likely to contain a disproportionately large share of security

vulnerabilities. This is a consequence of the reduced amount of testing that developers

invariably perform on less prominent components of a web application, resulting in a

higher rate of software defects. In addition, the relatively low request rate from users of

the web application results in a reduced exposure rate for these defects. Finally, when

flaws are exposed and reported, correcting the flaws may be given a lower priority than

those in higher traffic components of a web application.

Therefore, we conclude that a mechanism to address the problem of model undertrain-

ing caused by the non-uniform distribution of training data is necessary for a web ap-

plication anomaly detection system to provide an acceptable level of security.
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Figure 5.5: Architectural overview of WEBANOMALY, with global profile components high-
lighted.

5.2 Exploiting global knowledge

The lack of available training data is a fundamental obstacle when constructing accurate

profiles for many features of a web application. Without a minimum number of requests

to, for instance, a given parameter, it is unfeasible to construct models that encode a

reasonably precise approximation of that parameter’s normal behavior.

We observe, however, that parameters associated with the invocation of components

belonging to different web applications often exhibit a marked similarity to each other.

Referring again to the example shown in Figure 5.1, many web applications take an

integer value as a unique identifier for a class of objects such as a blog article or com-

ment, as in the case of the id parameter. Many web applications also accept date

ranges similar to the date parameter as identifiers or as constraints upon a search re-

quest. Similarly, as in the case of the title parameter, web applications often expect a

short phrase of text as an input, or perhaps a longer block of text in the form of a com-

ment body. One can consider each of these groupings of similar parameters as distinct
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Figure 5.6: Overall procedure. Profiles, both undertrained and well-trained, are collected from
a set of web applications. These profiles are processed offline to generate the global
knowledge base C and index CI . At another web application, given an undertrained
profile c′, C can then be queried to find a suitable replacement c.

parameter types.3

The key insight behind our approach is that parameters of the same type tend to induce

model compositions that are similar to each other in many respects. Consequently, if

the lack of training data for a subset of the components of a web application prevents

an anomaly detection system from constructing accurate profiles for the parameters

of those components, it is possible to substitute profiles for similar parameters of the

same type that were learned when enough training data was available. In Section 5.3,

the experiments we conducted on real-world data demonstrate that the aforementioned

insight is valid.

Our approach is composed of three phases; a graphical overview of the process is pre-

sented in Figure 5.6. The first phase is an extension of the training procedure originally

3This need not necessarily correspond to the concept of types as understood in the programming
languages context.
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implemented in [66], where undertrained versions of profiles are recorded in addition to

their final states. In the second phase, a global knowledge base of profiles C =
⋃

ai
Cai

is constructed offline, where Cai
are knowledge bases containing only well-trained,

stable profiles from anomaly detection systems previously deployed on a set of web

applications
⋃

i ai. A knowledge base CI =
⋃

ai
CIai

of undertrained profiles is then

constructed as an index into C, where CIai
is a knowledge base of undertrained profiles

from the web application ai. Additionally, we define a mapping f :
{
CI

}
× Cai

7→ C

between undertrained and well-trained profiles.

The third phase is performed online. For any new web application where insufficient

training data is available for a component’s parameter, the anomaly detector first ex-

tracts the undertrained profile c′. Then, the global knowledge base C is queried to find a

similar, previously constructed profile f
(
CI , c′

)
= c. The well-trained profile c is then

substituted for the undertrained profile c′ in the detection process.

5.2.1 Phase I: Creating undertrained models

In the first phase, the model training algorithm described in Section 3.3 was modified

to generate undertrained profiles in addition to normal profiles from a data set. These

undertrained profiles are generated using the following procedure. Let

Q(p)
ai

=
{

q
(p)
1 , q

(p)
2 , . . .

}

denote a sequence of client requests containing parameter p for a given web application.

Over Q
(p)
ai , profiles are deliberately undertrained on randomly sampled κ-sequences,
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where κ can take values from
⋃8

i=0 2i.4 Each of the resulting profiles is then added to a

knowledge base CIai
.

In general, κ corresponds to a number of training samples that is considered insufficient

to accurately characterize a feature. As discussed in Section 3.3, however, a criterion

based on the notion of model stability is used to determine the length of a training phase.

Let κm(·)
stable denote the number of samples required for a model to converge to a fixed point

– that is, to stabilize. Then, we consider κ to be such that κ � κm(·)
stable. Furthermore, we

denote the number of training samples required for a profile to converge as

κc
stable = max

m(·)
κm(·)

stable. (5.2.1)

At the end of this phase, the final state of each well-trained, or stable, profile is stored

in a knowledge base Cai
. Both Cai

and CIai
are collected from each web application, and

serve as input to the next phase.

5.2.2 Phase II: Building profile knowledge bases

The second phase consists of processing the output of the first phase, namely the sets

of knowledge bases of both undertrained and well-trained profiles learned from a va-

riety of web applications. The goal is to create C and CI , global knowledge bases of

well-trained and undertrained profiles, respectively, and a mapping between the two,

allowing CI to serve as an index to C.

4A discussion of appropriate values for κ is deferred until Section 5.2.4.
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Constructing global knowledge base indices

The construction of the undertrained profile database CI begins by merging a set of

knowledge bases
{
CIa1

, CIa2
, . . . , CIaI

}
that have previously been built by WEBANOMALY

over a set of web applications
⋃

i ai during the first phase. The profiles in CI are then

clustered to group profiles that are semantically similar to each other. Profile clustering

is performed in order to time-optimize query execution when using CI as an index

into C. The resulting clusters of profiles in CI are denoted by HI =
⋃

i h
I
i . In this

work, an agglomerative hierarchical clustering algorithm using group average linkage

was applied, although the clustering stage is, in principle, agnostic as to the specific

algorithm. For an in-depth discussion of clustering algorithms and techniques, we refer

the reader to [140].

Central to any clustering algorithm is the distance function, which defines how dis-

tances between the objects to be clustered are calculated. A suitable distance function

must reflect the semantics of the objects under consideration, and should satisfy two

conditions: 1) the overall similarity between elements within the same cluster is maxi-

mized, and 2) the similarity between elements within different clusters is minimized.

We define the distance between two profiles to be the sum of the distances between the

models comprising each profile. More formally, the distance between the profiles ci

and cj is defined as

(ci, cj) =
1

|ci

⋂
cj|

∑
m

(u)
i ,m

(u)
j ∈ci

T
cj

δu

(
m

(u)
i , m

(u)
j

)
, (5.2.2)
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where δu : Mu×Mu 7→ [0, 1] is the distance function defined between models of type

u ∈ U = {tok, int, len, char, struct}.

The token model m(tok) is represented as a set of unique tokens observed during the

training phase. Therefore, two token models m
(tok)
i and m

(tok)
j are considered similar if

they contain similar sets of tokens. Accordingly, the distance function for token models

is defined as the Jaccard distance [17]

δtok

(
m

(tok)
i , m

(tok)
j

)
= 1−

∣∣∣m(tok)
i

⋂
m

(tok)
j

∣∣∣∣∣∣m(tok)
i

⋃
m

(tok)
j

∣∣∣ . (5.2.3)

The integer model m(int) is parameterized by the sample mean µ and variance σ2 of

observed integers. Two integer models m
(int)
i and m

(int)
j are similar if these parameters

are also similar. Consequently, the distance function for integer models is defined as

δint

(
m

(int)
i , m

(int)
j

)
=

∥∥∥σ2
i

µ2
i
− σ2

j

µ2
j

∥∥∥
σ2

i

µ2
i

+
σ2

j

µ2
j

. (5.2.4)

As the length model is internally identical to the integer model, its distance function

δlen is defined similarly.

Recall that the character distribution model m(char) learns the frequencies of individual

characters comprising strings observed during the training phase. These frequencies

are then ranked and coalesced into n bins to create an ICD. Two character distribu-

tion models m
(char)
i and m

(char)
j are considered similar if each model’s ICDs are similar.
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Therefore, the distance function for character distribution models is defined as

δchar

(
m

(char)
i , m

(char)
j

)
=

n∑
l=0

‖bi (l)− bj (l)‖
maxk=i,j bk (l)

, (5.2.5)

where bi (k) is the value of bin k for m
(char)
i .

The structural model m(struct) builds an HMM by observing a sequence of character

strings. The resulting HMM encodes a probabilistic grammar that can produce a super-

set of the strings observed during the training phase. The HMM is specified by the tuple

〈S, O, MS×S, P (S, O) , P (S)〉. Several distance metrics have been proposed to evaluate

the similarity between HMMs [114, 80, 115, 56]. Their time complexity, however, is

non-negligible. Therefore, we adopt a less precise, but considerably more efficient, dis-

tance metric between two structural models m
(struct)
i and m

(struct)
j as the Jaccard distance

between their respective emission sets

δstruct

(
m

(struct)
i , m

(struct)
j

)
= 1− |Oi

⋂
Oj|

|Oi

⋃
Oj|

. (5.2.6)

Constructing a global knowledge base

Once a knowledge base of undertrained models CI has been built, the next step is to

construct a global knowledge base C. This knowledge base is composed of the indi-

vidual, well-trained knowledge bases from each web application as recorded during the

first phase; that is, C =
⋃

i Cai
. Because undertrained profiles are built for each well-

trained profile in C, a well-defined mapping f ′ : CI 7→ C exists between CI and C.

Therefore, when a web application parameter is identified as likely to be undertrained,
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the corresponding undertrained profile c′ can be compared to a similar undertrained

profile in CI , which is then used to select a corresponding stable profile from C.

5.2.3 Phase III: Mapping undertrained profiles

With the construction of a global knowledge base C and an undertrained knowledge

base CI , we can perform online querying of C. That is, given an undertrained profile c′

from an anomaly detector deployed over a web application ai, the mapping f :
{
CI

}
×

Cai
7→ C is defined as follows. A nearest-neighbor match is performed between c′ and

the previously constructed clusters HI from CI to discover the most similar cluster of

undertrained profiles. This is done to avoid a full scan of the entire knowledge base,

which would be prohibitively expensive due to the cardinality of CI .

Then, using the same distance metric defined in (5.2.2), a nearest-neighbor match is

performed between c′ and the members of HI to discover the most similar undertrained

profile cI . Finally, the global, well-trained profile f ′ (cI) = c is substituted for c′ for

the web application ai.

To make explicit how global profiles can be used to address a scarcity of training data,

consider the example of Figure 5.4. Since the resource path /account/password has

received only 100 requests, the profiles for each of its parameters {id, oldpw, newpw}

are undertrained. In the absence of a global knowledge base, the anomaly detector

would provide no protection against attacks manifesting themselves in the values passed

to any of these parameters. If, however, a global knowledge base and index are avail-

able, the situation is considerably improved. Given C and CI , the anomaly detector
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can simply apply f to each of the undertrained parameters to find a well-trained pro-

file from the global knowledge base that accurately models a parameter with similar

semantics, even when the model is for another web application. Then, these profiles

can be substituted for the undertrained profiles for each of {id, oldpw, newpw}. As will

be demonstrated in the following section, the substitution of global profiles provides an

acceptable detection accuracy for what would otherwise be an unprotected component.

Indeed, without a global profile, none of the attacks against that component would be

detected.

5.2.4 Mapping quality

The selection of an appropriate value for κ is central to both the efficiency and the

accuracy of querying C. Clearly, it is desirable to minimize κ in order to be able to

index into C as quickly as possible once a parameter has been identified to be subject

to undertraining at runtime. On the other hand, setting κ too low is problematic, as

Figure 5.7a indicates. For low values of κ, profiles are distributed with relatively high

uniformity within CI , such that clusters in CI are significantly different than clusters

of well-trained profiles in C. Therefore, slight differences in the state of the individual

models can cause profiles that are close in CI to map to radically different profiles in

C. As κ → κstable, however, profiles tend to form semantically-meaningful clusters, and

tend to approximate those found in C. Therefore, as κ increases, profiles that are close

in CI become close in C under f – in other words, f becomes robust with respect to

model semantics.5

5Our use of the term “robustness” is related, but not necessarily equivalent, to the definition of ro-
bustness in statistics (i.e., the property of a model to perform well even in the presence of small changes
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Figure 5.7: Procedure for building global knowledge base indices (a) by sub-sampling (b) the
training set Q.
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A principled criterion is required for balancing quick indexing against a robust profile

mapping. Accordingly, we first construct a candidate knowledge base CIκ for a given κ.

Additionally, we cluster the profiles in C as in the case of the undertrained knowledge

base. Then, we define a robustness metric as follows. Recall that HI =
⋃

i h
I
i is the

set of clusters in CI , and let H =
⋃

i hi be the set of clusters in C. Let g : HI 7→ Z+

be a mapping from an undertrained cluster to the maximum number of elements in that

cluster that map to the same cluster in C. The robustness metric ρ is then defined as

ρ
(
CI

)
=

1

|CI |
∑

i

g
(
hIi

)
. (5.2.7)

With this metric, an appropriate value for κ can now be chosen as

κmin = min
κ

(
ρ

(
CIκ

)
≥ ρmin

)
, (5.2.8)

where ρmin is a minimum robustness threshold.

5.3 Evaluation

The goal of this evaluation is threefold. First, we investigate the effects of profile clus-

tering, and support the notion of parameter types by examining global knowledge base

clusters. Then, we study how the quality of the mapping between undertrained profiles

and well-trained profiles improves as the training slice length κ is increased. Finally,

we present results regarding the accuracy of a web application anomaly detection sys-

in the underlying assumptions.)
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tem incorporating the application of a global knowledge base to address training data

scarcity.

The experiments that follow were conducted using a data set drawn from real-world

web applications deployed on both academic and industry web servers. Examples of

representative applications include payroll processors, client management, and online

commerce sites. For each application, the full content of each HTTP connection ob-

served over a period of approximately three months was recorded. The resulting flows

were then filtered using snort to remove known attacks. In total, the data set contains

823 distinct web applications, 36,392 unique components, 16,671 unique parameters,

and 58,734,624 HTTP requests.6

5.3.1 Profile clustering quality

To evaluate the accuracy of the clustering phase, we first built a global knowledge

base C from a collection of well-trained profiles using the procedure described in Sec-

tion 5.2.1. The profiles were trained on a subset of the aforementioned data, contain-

ing traffic involving a wide variety of web applications. This subset was composed

of 603 web applications, 27,990 unique resource paths, 9,023 unique parameters, and

3,444,092 HTTP requests. The clustering algorithm described in Section 5.2.2 was

then applied to group profiles according to their parameter type. Sample results from

this clustering are shown in Figure 5.8b. Each leaf node corresponds to a profile and

displays the parameter name and a few representative sample values corresponding to

6Unfortunately, due to contractual agreements, we are unable to disclose specific information identi-
fying the web applications themselves.
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type: {General Auto, Painters, unknown}

name: {Foo LLC, Bar Inc.}
notes: {1/29/07 - email, 10/26/06 thru, spoke}
type: {health care, wholesale}

notes: {1/29/07 - email, 10/26/06 thru, spoke}

notes: {1/29/07 - email, 10/26/06 thru, spoke}

notes: {1/29/07 - email, 10/26/06 thru, spoke}

notes: {1/29/07 - email, 10/26/06 thru, spoke}

(a) κ = 64
note: {10-5, no ans, called and emailed, no client resp}
note: {10-5, no ans, called and emailed, no client resp}
date: {1/29/07, 12/31/2006}
date: {1/29/07, 12/31/2006}

exp: {02/01/2007, 08/01/2006, 09/01/2006}

exp: {02/09/2007, 09/30/2006}

exp: {01/01/2008, 05/22/2007}
indate: {01/29/2007, 12/29/2006}
stdate: {01/30/2007, 02/10/2007}

stdate: {01/31/2006, 11/01/2006}
stdate: {01/01/1900, 05/08/2006}
stdate: {02/19/2004, 09/15/2005, 12/07/2005}

ref: {01/29/2007, 01/30/2007, 01/31/2007}
stdate: {01/01/1900, 04/01/2007, 05/01/2007}
stdate: {01/01/1900, 04/01/2007, 05/01/2007}

(b) κstable ' 103

addr: {15 ROOF AVE, 373 W SMITH, 49 N Ave}

stat: {CA, TX}

stat: {CA, TX}

w: {Ineligible, Old}

w: {Eligible, New}
code: {OD}

type: {Payment, Sales}
cd: {XX}

w: {Ineligible, New}
code: {OD}

city: {OUR CITY, OTHER CITY, San Diego}

stat: {GA}

(c) κ = 8
thepage: {TKGGeneral, TKGGeneral, KZDA.pdf}

code: {02-286, BE2}
code: {CK-1006, NZS}

code: {CK-1006, NZS}

accode: {r94, xzy}
thepage: {TKGGeneral, TKGGeneral, KZDA.pdf}

code: {CK-1006, NES}

thepage: {TKGGeneral, TKGGeneral, KZDA.pdf}

code: {CK-1006, NES}
updateTask: {TKGGeneral, KZDA.pdf, Chan.cfm?taskna}

thepage: {TKGGeneral, TKGGeneral, KZDA.pdf}

(d) κ = 32

Figure 5.8: Dendrograms of the clustering of C, (a-b), and CI , (c-d), at various κ. Each leaf
represents a profile and includes the name of the parameter and samples values
observed during training. As κ increases, profiles are clustered more accurately.

the parameter.

As the partial dendrogram indicates, the resulting clusters in C are accurately clustered

by parameter type. For instance, date parameters from different web applications are

grouped into a single hierarchy, while unstructured text strings are grouped into a sep-

arate hierarchy.

The following experiment investigates how κ affects the quality of the final clustering.
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5.3.2 Profile mapping robustness

Recall that in order to balance the robustness of the mapping f between undertrained

profiles and global profiles against the speed with which undertraining can be ad-

dressed, it is necessary to select an appropriate value for κ. To this end, we generated

undertrained knowledge bases for increasing values of κ = {1, 2, 4, 8, 16, 32, 64} from

the same data set used to generate C, following the procedure outlined in Section 5.2.2.

Partial dendrograms for various κ are presented in Figure 5.8.

At low values of κ – for example, Figure 5.8c – the clustering process exhibits non-

negligible systemic errors. For instance, the parameter stat should be clustered as a

token set of states, but instead is grouped with unstructured strings such as cities and

addresses. A more accurate clustering would have dissociated the token and string

profiles into well-separated sub-hierarchies.

As shown in Figure 5.8d, larger values of κ lead to more semantically-meaningful

groupings. Some inaccuracies are still noticeable, but the clustering process of the

sub-hierarchy is significantly better than the one obtained at κ = 8. A further improve-

ment in the clusters is shown in Figure 5.8a. At κ = 64, the separation between dates

and unstructured strings is sharper; except for one outlier, the two types are recognized

as similar and grouped together in the early stages of the clustering process.

Figure 5.9 plots the profile mapping robustness ρ against κ for different cuts of the

dendrogram, indicated by Dmax. Dmax is a threshold representing the maximum distance

between two clusters. For low Dmax, the “cut” will generate many clusters with a few

elements; on the other hand, for high values of Dmax, the algorithm will tend to form
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Figure 5.9: Plot of profile mapping robustness for varying κ.

less clusters, each having a larger number of elements.

Figure 5.9 shows two important properties of our technique. First, it demonstrates that

the robustness is fairly insensitive to Dmax. Second, the robustness of the mapping

increases with κ until saturation at 32 ≤ κ ≤ 64. This not only confirms the soundness

of the mapping function, but it also provides insights on the appropriate choice of κmin

to minimize the delay to global profile lookup while maximizing the robustness of the

mapping.
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5.3.3 Detection accuracy

Having studied the effects of profile clustering and varying values for κ upon the ro-

bustness of the profile mapping f , a separate experiment was conducted in order to

evaluate the detection accuracy of a web application anomaly detector incorporating C

and CI , the knowledge bases constructed in the previous experiments. In particular, the

goal of this experiment is to demonstrate that the combination of WEBANOMALY and

a global knowledge base exhibits an improved detection accuracy in the presence of

training data scarcity.

The data used in this experiment was a subset of the full data set described above, con-

taining traffic from one related set of web applications implementing online commerce

sites. This data set was completely disjoint from the one used to construct the global

knowledge base and its indices, to prevent any potential for the substitution of profiles

from the same application. Additionally, the use of a global knowledge base generated

from many types of web applications to address a lack of training data for a specific

web application mirrors the intended usage of the technique. In total, this data set con-

sisted of 220 unique real-world web applications, 8,402 unique resource paths, 7,648

distinct parameters, and 55,290,532 HTTP requests.

The threat model that the anomaly detector assumes is that of an attacker attempting

to compromise the confidentiality or integrity of data exposed by a web application

by injecting malicious code in request parameters.7 Therefore, a set of 100,000 attacks

7Although the anomaly detector used in this study is capable of detecting more complex session-level
anomalies, we restrict the threat model to request parameter manipulation because we do not address
session profile clustering in this work.
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was introduced into the data set. These attacks were real-world examples and variations

upon cross-site scripting (XSS), SQL injection, and command execution exploits that

manifest themselves in request parameter values.8 Representative examples of these

attacks include:

• malicious JavaScript inclusion

<script src="http://example.com/malware.js"></script>;

• bypassing login authentication

’ OR ’x’=’x’--;

• command injection

; cat /etc/passwd | mail attacker@gmail.com #.

To establish a worst-case bound on the detection accuracy of the system, profiles for

each observed request parameter were deliberately undertrained to artificially induce a

scarcity of training data for all parameters. That is, for each value of κ =
⋃6

i=0 2i, the

anomaly detector prematurely terminated profile training after κ samples, and then used

the undertrained profiles to query C. The resulting global profiles were then substituted

for the undertrained profiles and evaluated against the rest of the data set. The sensitiv-

ity of the system was varied over the interval [0, 1], and the resulting ROC curves for

each κ are plotted in Figure 5.10.

As is clearly indicated, low values of κ result in the selection of global profiles that

do not accurately model the behavior of the undertrained parameters. As κ increases,

8These attacks remain the most common attacks against web applications.
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Figure 5.10: Global profile ROC curves for varying κ.

however, the quality of the global profiles returned by the querying process increases

as well. In particular, this increase in quality closely follows the mapping robustness

plot presented in Figure 5.9. As predicted, setting κ = {32, 64} leads to fairly accurate

global profile selection, with the resulting ROC curves approaching that of fully-trained

profiles. This means that even if the component of a web application has received only

a few requests, it is possible to achieve effective attack detection by leveraging a global

knowledge base. As a consequence, our approach can improve the effectiveness of

real-world web application anomaly detection systems.

One concern regarding the substitution of global profiles for local request parameters

is that a global profile that was trained on another web application may not detect valid
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attacks against the undertrained parameter. Without this technique, however, recall that

a learning-based web application anomaly detector would otherwise have no effective

model at all, and, therefore, the undertrained parameter would be unprotected by the

detection system (i.e., zero true positive rate). Furthermore, the ROC curves demon-

strate that while global profiles are in general not as precise as locally-trained models,

they do provide a significant level of detection accuracy.9 Therefore, we conclude that

our approach is a useful technique to apply in the presence of undertrained models and,

in general, in the case of training data scarcity.

5.4 Conclusions

In this chapter, the predominant case of highly skewed web client access distributions

is shown to cause model undertraining. The resulting scarcity of training data is a fun-

damental challenge to web application anomaly detection that we address through the

inclusion of global knowledge bases. Global knowledge bases contain well-trained,

stable profiles to remediate a local scarcity of training data by exploiting global simi-

larities in web application parameters. We have evaluated the efficacy of this approach

over an extensive data set collected from real-world web applications. We found that

although using global profiles does result in a small reduction in detection accuracy, the

resulting system, when given appropriate parameters, does provide reasonably precise

modeling of otherwise unprotected web application parameters.

9Note that if global profiles were found to be as accurate as local profiles, this would constitute an
argument against site-specific learning of models, since in that case, models could be trained for one web
application and applied directly to other web applications.
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The next chapter will discuss an approach to dealing with yet another fundamental

obstacle to anomaly detection: concept drift.
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Chapter 6

Addressing Concept Drift

Anomaly-based intrusion detection generally relies upon machine learning techniques

to automatically construct models characterizing the normal behavior of certain fea-

tures. As discussed in the previous chapter, the training data sets used to construct

these models must fulfull two requirements. First, the training data must be free from

attacks. Second, the training data must completely capture the behavior of the modeled

features. Existing work has addressed how training in the presence of noisy data may

be accomplished [29, 20, 58], and WEBANOMALY incorporates a set of components

specifically designed to address situations involving a scarcity of training data.

One issue that has not been well-studied, however, is the difficulty of adapting to

changes in the behavior of the protected applications. By behavior of a web appli-

cation, we refer to the set of features exposed to the end user by an application. In the

context of web applications, this corresponds to the set of inputs that are processed and
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the outputs that are produced. This issue has become increasingly important because

of the nature of web application distribution. In contrast to traditional software dis-

tribution mechanisms, web applications are centralized, and therefore easy to update.

Therefore, the addition or modification of features and, thus, application behavior over

time is common.

Our analysis reveals that significant changes in the behavior of web applications are

indeed frequent. We refer to this phenomenon as web application concept drift. In

the context of anomaly-based detection, this means that legitimate behavior might be

misclassified as an attack after an update of the application, causing the generation

of false positives. Normally, whenever a new version of an application is deployed

in a production environment, a coordinated effort involving application maintainers,

deployment administrators, and security experts is required. That is, developers have

to inform administrators about the changes that are rolled out, and the administrators

have to update or re-train the anomaly models accordingly. Otherwise, the amount of

false positives will increase significantly.

We propose a technique that recognizes when anomalous inputs are due to legitimate

updates to a web application. In such cases, false positives are suppressed by auto-

matically and selectively re-training the associated models. Moreover, when possible,

model parameters can be automatically updated without requiring any re-training. This

technique renders the tedious steps described above unnecessary.

This chapter proposes a set of change detection techniques to address the concept drift

problem by treating the protected web applications as oracles. We show that HTTP

responses contain important information that can be effectively leveraged to update
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previously learned models to take changes into account. The results of applying our

technique on real-world data show that learning-based anomaly detectors can auto-

matically adapt to changes, and, through this technique, are able to reduce their false

positive rate without decreasing their detection accuracy.

The following sections introduce a precise notion of concept drift as it relates to web

applications. We then motivate the use of our change detection technique by presenting

a large-scale study of the prevalence of concept drift in the real world. Then, the design

of our system to address concept drift is discussed. Finally, WEBANOMALY with change

detection is evaluated to quantify the resulting improvement in detection accuracy.1

6.1 Concept drift

To introduce the idea of concept drift, we will refer to the generalized model of web-

based applications presented in Section 3.1 and depicted in Figure 3.1. Readers familiar

with this material can skim until Section 6.1.2. After describing the problem of concept

drift, we show that concept drift is a problem that exists in the real world, and we

motivate why it should be addressed. Unless stated differently, we use the shorthand

term anomaly detector to refer to anomaly-based detectors that leverage unsupervised

machine learning techniques.

1An earlier version of this work was presentd in [83].
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Ri =



ri,1 = /index,

ri,2 = /article,

ri,3 = /comments,

ri,4 = /comments/edit,

ri,5 = /account/login,

ri,6 = /account/index,

ri,7 = /account/password


Figure 6.1: Resources comprising an example web application blog.example.com.

6.1.1 Anomaly detection for web applications

A set of web applications A can be decomposed into a set of resource paths, or compo-

nents, R and named parameters P . A web application receives sequences of requests

Q = {q1, q2, . . .} issued by web clients, where each query can be represented by the

tuple qi = 〈ai, ri,j, Pq〉. Here, ai is a web application, ri,j is a resource path associated

with the web application, and Pq ⊆ Pi,j is a subset of possible parameter name-value

pairs that ri,j accepts. The web application generates a sequence of responses to queries

S = {s1, s2, . . .}, where a one-to-one mapping exists between each pair (qi, si). Each

response can be represented by the tuple si = 〈Kq, dq〉, where Kq is a set of cookies to

be instantiated or cleared on the client, and dq is a document (e.g., HTML, JSON) to be

interpreted by the client.

A web application ai = blog.example.com might be composed of the resources shown

in Figure 5.1. In this example, resource path ri,7 might take a set of parameters as part

of the HTTP request such as Pi,7 = {pi,7,1 = oldpw, pi,7,2 = newpw}. A client might
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ca1

ca1,r1 · · · ca1,ri · · · ca1,rn

ca1,r1,p1 ca1,r1,p2 · · · ca1,ri,pj
ca1,ri,pj+1 · · · ca1,rn,pm−1 ca1,rn,pm

Figure 6.2: The hierarchy of models constructed by WEBANOMALY. Session profiles are cre-
ated across the entire web application a1 at the root of the hierarchy. Document
profiles are created for each unique resource ri. Parameter profiles are created for
each unique resource and parameter (ri, pj).

issue a query to ri,7 of the form

q =


blog.example.com,

/account/password,

{(oldpwd, foo) , (newpw, bar)}


.

The web application might issue a response of the form s = {∅, “<html> . . . ”}, indi-

cating that no cookies are to be set, and an HTML document is to be rendered.

During the initial training phase, the anomaly detection system learns the behavior of

the monitored web applications in terms of models. The hierarchy of models created

by WEBANOMALY is presented in Figure 6.2, and closely mirrors the abstract model

of web applications. At each node of the abstract model, a set of related models is

instantiated to model various features of that node. These model sets are known as
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profiles, and are represented by a tuple of models

c =
〈
m

(·)
1 , m

(·)
2 , . . . ,m(·)

n

〉
.

Specifically, for each parameter pi,j,k, a parameter profile is created that can be repre-

sented by the tuple

cpi,j,k
=

〈
m(tok), m(int), m(len), m(char), m(struct)〉 ,

where m(tok) is the token model, m(int) is the integer model, m(len) is the string length

model, m(char) is the character distribution model, and m(struct) is the structure model.

For sequences of HTTP requests Q = {q1, q2, . . .} from a given client, the profile

cai
=

〈
m(int), m(sess)〉

is applied, where m(sess) is the session model.

Finally, the structure of responses ri,j generated by the monitored web applications is

characterized by the profile

cri,j
=

〈
m(doc)〉 ,

where m(doc) is the document model.

m(tok) models parameter values as a small, finite set of legal tokens. m(int) and m(len)

describe legitimate distributions for integers and string lengths, respectively, using the
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non-parametric Chebyshev inequality. m(char) models character strings as a ranked fre-

quency histogram, or Idealized Character Distribution (ICD), that is compared using

the χ2 test. m(struct) models sets of character strings by inducing a Hidden Markov

Model (HMM). The HMM encodes a probabilistic grammar that can produce a su-

perset of strings observed in a training data set. m(sess) adapts a combination of the

integer model and structure model to capture the normal sequences of request invoca-

tions expected by the modeled web application, as well as the inter-arrival times of the

individual queries. Finally, m(doc) models the normal structures of documents generated

by the monitored web applications, as well as the incidence and positions of sensitive

data and client-side code within those documents. For more details on the models and

how they are constructed, please refer to Section 3.3.

After converging to a fixed point, individual models switch to the detection phase. Here,

observed values are compared to profiles to determine how well each value fits the

learned models. Bayesian networks are then used to compute an aggregated anomaly

score on the interval [0, 1]. If the probability of a value is less than a certain threshold,

an anomaly is generated.

6.1.2 Web applications are not static

In machine learning, changes in the modeled behavior are known as concept drift [109].

Intuitively, the concept is the modeled phenomenon – for example, the structure of

requests to a web server, or the recurring patterns in the payload of network packets.

Thus, variations in the main features of the phenomena under consideration result in
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changes, or drifts, in the concept.

Although the generalization and abstraction capabilities of modern learning-based anom-

aly detectors are resilient to noise consisting of small, legitimate variations in the mod-

eled behavior, concept drift is difficult to detect and to cope with [64]. The reason is

that modeled features may stabilize to different values after a change has occurred. For

instance, a string length model could calculate the sample mean and variance of the

string lengths that are observed during training. Then, during detection, the Cheby-

shev inequality is used to detect strings with lengths that significantly deviate from

the mean, taking into account the observed variance. Clearly, small differences in

the lengths of strings will be considered normal. On the other hand, the mean and

variance of the string lengths can completely change because of legitimate and perma-

nent modifications in the web application. In this case, the normal mean and variance

will converge to completely different values, resulting in concept drift. If appropriate

re-training or manual updates are not performed, the model will classify new, benign

strings as anomalous. This can be a human-intensive activity requiring substantial ex-

pertise. Therefore, having an automated, black-box mechanism to adjust the parameters

is clearly very desirable.

Changes in web applications can manifest themselves in several ways. In the context

of learning-based detection of web attacks, those changes can be categorized into three

groups: request changes, session changes, and response changes.
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Request changes

Changes in requests occur when an application is upgraded to handle different HTTP re-

quests. These changes can be further divided into two groups: parameter value changes

and request structure changes. The former involve modifications of the actual value of

the parameters, while the latter occur when parameters are added, removed, or renamed.

Example. A new version of a web forum introduces internationalization (I18N) and

localization (L10N). Besides handling different languages, I18N and L10N allow sev-

eral types of strings to be parsed as valid dates and times. For instance, valid strings for

the datetime parameter are ‘3 May 2009 3:00’, ‘3/12/2009’, ‘3/12/2009 3:00

PM GMT-08’, ‘now’. In the previous version, valid date-time strings had to conform to

the regular expression ‘[0-9]{1,2}/[0-9]{2}/[0-9]{4}’. Even a model with good

generalization properties would learn that the field datetime is composed of numbers

and slashes, with no spaces. Thus, other strings such as ‘now’ or ‘3/12/2009 3:00

PM GMT-08’ would be flagged as anomalous. Also, in our example, tz and lang pa-

rameters have been added to take into account time zones and languages. To summa-

rize, the new version introduces two classes of changes. Clearly, the parameter domain

of datetime is modified. Secondly, new parameters are added.

Changes in HTTP requests directly affect the request models. First, parameter value

changes affect any models that rely on the parameters’ values to extract features. For

instance, consider two of the models used in WEBANOMALY: m(char) and m(struct). The

former models a string’s character distribution by storing the frequency of all the sym-

bols found in the strings during training, while the latter models the strings’ structure as
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a stochastic grammar, using a Hidden Markov Model (HMM). In the aforementioned

example, the I18N and L10N introduce new, legitimate values in the parameters; thus,

the frequency of numbers in m(char) changes and new symbols (e.g., ‘-’, ‘[a-zA-Z]’

have to be taken into account. It is straightforward to note that m(struct) is affected in

terms of new transitions introduced in the HMM by the new strings. Secondly, request

structure changes may affect any type of request model, regardless of the specific char-

acteristics. For instance, if a model for a new parameter is missing, requests that contain

that parameter might be flagged as anomalous.

Session changes

Changes in sessions occur whenever resource path sequences are reordered, inserted,

or removed. Adding or removing application modules introduces changes in the session

models. Also, modifications in the application logic are reflected in the session models

as reordering of the resources invoked.

Example. A new version of a web-based community software grants read-only ac-

cess to anonymous users, allowing them to display contents previously available to sub-

scribed users only. In the old version, legitimate sequences were 〈/site, /auth, /blog〉

or 〈/site, /auth, /files〉, where /site indicates the server-side resource that han-

dles the public site, while /auth and /blog were formerly private resources. Initially,

the probability of observing /auth before /blog or /files is close to one (since users

need to authenticate before accessing private material). This is no longer true in the

new version, however, where /site→ /files|/blog|/auth are all possible.
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Changes in sessions impact all models that rely on the sequence of resources that are in-

voked during the normal operation of an application. For instance, consider the model

m(sess), which builds a probabilistic finite state automaton that captures sequences of

resource paths. New transitions must be added to take into account the changes men-

tioned in the above example. These types of models are sensitive to strong changes in

the session structure and should be updated accordingly when they occur.

Response changes

Changes in responses occur whenever an application is upgraded to produce different

responses. Interface redesigns and feature addition or removal are example causes of

changes in the responses. Response changes are frequent, since page updates or re-

designs often occur in modern websites.

Example. A new version of a video sharing application introduces Web 2.0 features

into the user interface, allowing for the modification of user interface elements with-

out refreshing the entire page. In the old version, relatively few nodes of documents

generated by the application contained client-side code. In the new version, however,

many nodes of the document contain event handlers to trigger asynchronous requests

to the application in response to user events. Thus, if a response model is not updated

to reflect the new structure of such documents, a large number of false positives will

be generated due to legitimate changes in the characteristics of the web application

responses.
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6.1.3 Prevalence of concept drift

To understand whether concept drift is a relevant issue for real-world websites, we

performed a number of experiments. For the first experiment, we monitored 2,264

public websites, including the Alexa Top 500 and other sites collected by querying

Google with popular terms extracted from the Alexa Top 500. The goal was to identify

and quantify the changes in the forms and input fields of popular websites at large.

This provides an indication of the frequency with which web applications are updated

or altered.

Once every hour, we visited one representative page for each of the 2,264 websites. In

total, we collected 3,303,816 pages, comprising more than 1,390 snapshots for each

website, between January 29, 2009 and April 13, 2009. 10% of the representative

pages were manually selected to have a significant number of forms, input fields, and

hyperlinks with parameters. By doing this, we gathered a considerable amount of in-

formation regarding the HTTP messages generated by some applications. Examples of

these pages are registration pages, data submission pages, or contact form pages. For

the remaining websites, we simply used their home pages.

For each website w, each page sample crawled at time t is associated with a tuple〈
|F |(w)

t , |I|(w)
t

〉
, the cardinality of the sets of forms and input fields, respectively. By

doing this, we collected samples of the variables

|F |w =
{
|F |wt1 , . . . , |F |

w
tn

}
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Figure 6.3: Relative frequency of the standard deviation of the number of forms (a) and input
fields (c). Also, the distribution of the expected time between changes of forms (b)
and input fields (d) are plotted. A non-negligible portion of the websites exhibit
changes in the responses.
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and

|I|w =
{
|I|wt1 , . . . , |I|

w
tn

}
,

with 0 < n <∼ 1, 390. Figure 6.3 shows the relative frequency of the variables

XI =
{
stdev(|I|(w1)), . . . , stdev(|I|(wk))

}
and

XF =
{
stdev(|F |(w1)), . . . , stdev(|F |(wk))

}
.

This demonstrates that a significant number of websites exhibit variability in their re-

sponses, in terms of elements modified in the pages, as well as requests, in terms of new

forms and parameters. In addition, we estimated the expected time between changes of

forms and inputs fields, E [TF ] and E [TI ], respectively. In terms of forms, 40.72% of

the websites changed during the observation period. More precisely, 922 out of 2,264

websites have a finite E [TF ]. Similarly, 29.15% of the websites exhibited changes in

the number of input fields – that is, E [TI ] < +∞ for 660 websites. Figure 6.3 shows

the relative frequency of (b) E [TF ] and (d) E [TI ]. This confirms that a non-negligible

portion of the websites exhibit significantly frequent changes in the responses.

For the second experiment, we monitored in depth three large, data-centric web ap-

plications over several months: Yahoo! Mail, YouTube, and MySpace. We dumped

HTTP responses captured by emulating user interaction using a custom, scriptable web

browser implemented with HtmlUnit. Examples of these interactions are as follows:
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visit the home page, login, browse the inbox, send messages, return to the home page,

click links, log out. Manual inspection revealed some major changes in Yahoo! Mail.

For instance, the most evident change consisted of a set of new features added to the

search engine (e.g., local search, refined address field in maps search). User pages of

YouTube were significantly updated with new functionality between 2008 and 2009.

Notably, the new version handles several new parameters that allow users to reposition

widgets in their personal pages. The analysis on MySpace did not reveal any signif-

icant change. The results of these two experiments show that changes in server-side

applications are common. More importantly, these modifications often involve the way

user data is represented, handled, and manipulated.

For the third experiment, we measured changes in requests and sessions by inspect-

ing the code repositories of three of the largest, most popular open-source web ap-

plications: WordPress, Movable Type, and PhpBB. The goal was to understand

whether upgrading a web application to a newer release results in significant changes

in the features that are used to determine its behavior. In this analysis, we examined

changes in the source code that affect the manipulation of HTTP responses, requests,

and session data. We used StatSVN2, a tool for tracking and visualizing the activ-

ity of SVN repositories (e.g., the number of lines changed or the most active devel-

opers). We modified StatSVN to incorporate a set of heuristics to compute approx-

imate counts of the lines of code that, directly or indirectly, manipulate HTTP ses-

sion, request or response data. In the case of PHP, examples representative of such

lines include, but are not limited to, REQUEST| SESSION| POST| GET|session |-

http |strip tags|addslashes. In order to take into account data manipulation

2Source available for download at http://statsvn.org
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Figure 6.4: Lines of codes in the repositories of PhpBB, WordPress, and Movable Type, over
time. Counts include only the code that manipulates HTTP responses, requests, and
sessions.
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performed through library functions (e.g., WordPress’ custom Http class), we also

generated application-specific code patterns by manually inspecting and filtering the

core libraries. Figure 6.4 shows, over time, the lines of code in the repositories of

PhpBB, WordPress, and Movable Type that manipulate HTTP responses, requests

and, sessions. These results show the presence of significant modifications in the web

application in terms of relevant lines of code added or removed . More importantly,

such modifications affect the way HTTP data is manipulated and, thus, impact request,

response or session models.

The aforementioned experiments provide evidence that changes in web applications

are common, and they affect features used to model the behavior of the applications.

Therefore, we conclude that anomaly detectors for web applications must incorporate

procedures to prevent false alerts due to concept drift. In particular, a mechanism is

needed to discriminate between legitimate and malicious changes and respond accord-

ingly.

6.2 Addressing concept drift

In this section, we first present a technique to distinguish between legitimate changes

in web application behavior and evidence of malicious activity. We then discuss how

a web application anomaly detection system can effectively handle legitimate concept

drift.
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Figure 6.5: Architectural overview of WEBANOMALY, with concept drift components high-
lighted.

6.2.1 The web application as oracle

The body of HTTP responses contains a set of links Li and forms Fi that refer to a set

of target resources. Each form also includes a set of input fields Ii. In addition, each

link li,j ∈ Li and form fi,j ∈ Fi has an associated set of parameters.

From a resource ri, the client clicks upon a link li,j or submits a form fi,j . Either of these

actions generates a new HTTP request to the web application with a set of parameter

key-value pairs, resulting in the return of a new HTTP response to the client, ri+1, the

body of which contains a set of links Li+1 and forms Fi+1. This process continues until

the session has ended (i.e., either the user has explicitly logged out, or a timeout has

occurred).

In the context of addressing concept drift, our key observation is that, at each step

of a web application session, the set of potential target resources is given exactly by

the content of the current resource. That is, given ri, the associated sets of links Li

and forms Fi directly encode the set of possible ri+1. Furthermore, each link li,j and
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form fi,j indicates a precise set of expected parameters and, in some cases, the set of

legitimate values for those parameters that can be provided by a client.

Example. Consider a hypothetical banking web application, where the current re-

source ri = /account presented to a client is an account overview containing a set of

links

Li =



/account/history?aid = 328849660322,

/account/history?aid = 446825759916,

/account/transfer,

/logout


,

and forms (represented as their target action)

Fi =


/feedback,

/search

 .

From Li and Fi, we can deduce the set of legal candidate resources for the next request

ri+1. Any other resource would, by definition, be a deviation from a legal session flow

through the web application as specified by the application itself. For instance, it would

not be expected behavior for a client to directly access /account/transfer/submit

(i.e., a resource intended to submit an account funds transfer) from ri. Furthermore, for

the resource /account/history, it is clear that the web application expects to receive

a single parameter aid with an account number as an identifier.
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In the case of the form with target /feedback, let the associated input elements be:

<select name="subject">

<option>General</option>

<option>User interface</option>

<option>Functionality</option>

</select>

<textarea name="message" />

It immediately follows that any invocation of the /feedback resource from ri should

include the parameters subject and message. In addition, the legal set of values for

the parameter subject is given by enumerating the enclosed <option /> tags. Any

deviation from this specification could be considered evidence of malicious behavior.

We conclude that the responses generated by a web application constitute a specifi-

cation of the intended behavior of clients and the expected inputs to an application’s

resources. As a consequence, when a change occurs in the interface presented by a web

application, this will be reflected in the content of its responses. Therefore, our anom-

aly detection system performs response modeling to detect and adapt to changes in

monitored web applications. The details of this approach are discussed in the following

section.
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6.2.2 Adaptive response modeling

In order to detect changes in web application interfaces, the response modeling of WE-

BANOMALY has been augmented with the ability to parse links and forms contained in

HTML documents returned to a client. The approach is divided into two phases.

Extraction and parsing

In the first phase, the anomaly detector parses each HTML document contained in a

response issued by the web application to a client. For each <a /> tag encountered, the

contents of the href attribute is extracted and analyzed. The link is decomposed into

tokens representing the protocol (e.g., http, https, javascript, mailto), target host,

port, path, parameter sequence, and anchor. Paths are subject to additional processing;

for instance, relative paths are normalized to obtain a canonical representation. This

information is stored as part of an abstract document model for later processing.

A similar process occurs for forms. When a <form /> tag is encountered, the action

attribute is extracted and analyzed as in the case of the link href attribute. Furthermore,

any <input />, <textarea />, or <select /> and <option /> tags enclosed by a

particular <form /> tag are parsed as parameters to the corresponding form invoca-

tion. For <input /> tags, the type, name, and value attributes are extracted. For

<textarea /> tags, the name attribute is extracted. Finally, for <select /> tags, the

name attribute is extracted, as well as the content of any enclosed <option /> tags.

The target of the form and its parameters are recorded in the abstract document model

as in the case for links.
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Analysis and modeling

During the second phase, the set of links and forms contained in a response is processed

by the anomaly engine. For each link and form, the corresponding target resource is

compared to the existing known set of resources. If the resource has not been observed

before, a new model is created for that resource. The session model is also updated to

account for a potential transition from the resource associated with the parsed document

and the target resource by training on the observed session request sequence.

For each of the parameters parsed from links or forms contained in a response, a com-

parison with the existing set of known parameters is performed. If a parameter has

not already been observed, a profile is created and associated with the target resource

model.

Any values contained in the response for a given parameter are processed as training

samples for the associated models. In cases where the total set of legal parameter values

is specified (e.g., <select /> and <option /> tags), the parameter profile is updated

to reflect this. Otherwise, the profile is trained on subsequent requests to the associated

resource.

As a result of this analysis, the anomaly detector is able to adapt to changes in session

structure resulting from the introduction of new resources. In addition, the anomaly

detector is able to adapt to changes in request structure resulting from the introduction

of new parameters and, in a limited sense, to changes in parameter values.
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Client Anomaly detector Web app. server

qi

Parsing

Change or attack?
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Figure 6.6: An abstract representation of the interaction between the client and the web appli-
cation server, monitored by a learning-based anomaly detector. After request qi is
processed, the corresponding response respi is intercepted and link Li and forms
Fi are parsed to update the request models. This knowledge is exploited as a change
detection criterion for the subsequent request qi+1.

6.2.3 Advantages and limitations

Due to the response modeling algorithm described in the previous section, our web

application anomaly detector is able to automatically adapt to many common changes

observed in web applications as modifications are made to the interface presented to

clients. Both changes in session and request structure can be accounted for in an auto-

mated fashion. Furthermore, we claim that web application anomaly detectors that do

not perform response modeling cannot reliably distinguish between anomalies caused

by legitimate changes in web applications and those caused by malicious behavior.

Therefore, as will be shown in Section 6.3, any such detector that solely monitors re-

quests is more prone to false positives in the real world.

Clearly, the technique relies upon the assumption that the web application has not been

compromised. Since the web application, and in particular the documents it gener-

ates, is treated as an oracle for whether a change has occurred, if an attacker were to

compromise the application in order to introduce a malicious change, the malicious be-

havior would be learned as normal by our anomaly detector. Of course, in this case,
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the attacker would already have access to the web application. Also, we assume that

our anomaly detector observes all requests and responses to and from untrusted clients.

Therefore, any attack that would compromise response modeling would be detected

and blocked.

Besides the aforementioned assumptions, three limitations are important to note. First,

the set of target resources may not always be statically derivable from a given resource.

For instance, this can occur when client-side scripts are used to dynamically gener-

ate page content, including links and forms. Accounting for dynamic behavior would

require the inclusion of script interpretation. This, however, has a high overhead, is

complex to perform accurately, and introduces the potential for denial of service at-

tacks against the anomaly detection system. For these reasons, we have not included

such a component in the current system, although further research is planned to deal

with dynamic behavior. Moreover, as Section 6.3 demonstrates, the proposed technique

performs well in practice.

Second, the technique does not fully address changes in the behavior of individual re-

quest parameters in its current form. In cases where legitimate parameter values are

statically encoded as part of an HTML document, response modeling can directly ac-

count for changes in the legal set of parameter values. Unfortunately, in the absence of

any other discernible changes in the response, changes in parameter values provided by

clients cannot be detected. However, heuristics such as detecting when all clients switch

to a new observable behavior in parameter values (i.e., all clients generate anomalies

against a set of models in a similar way) could serve as an indication that a change in

legitimate parameter behavior has occurred.
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Third, the technique cannot handle the case where a resource is the result of a parame-

terized query and the previous response has not been observed by the anomaly detector.

In our experience, however, this does not occur frequently in practice, especially for

sensitive resources.

6.3 Evaluation

In this section, we show that our techniques reliably distinguish between legitimate

changes and evidence of malicious behavior, and present the resulting improvement in

terms of detection accuracy.

The goal of this evaluation is twofold. We first show that concept drift in modeled

behavior caused by changes in web applications results in lower detection accuracy.

Second, we demonstrate that our technique based on HTTP responses effectively miti-

gates the effects of concept drift. In both the experiments, the testing data set includes

samples of the most common attacks against web applications such as cross-site script-

ing (XSS), SQL injections, and command execution exploits that are reflected in request

parameter values. Representative examples of these attacks include:

• malicious JavaScript inclusion

<script src="http://example.com/malware.js"></script>;

• bypassing login authentication

’ OR ’x’=’x’--;
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• command injection

; cat /etc/passwd | mail attacker@gmail.com #.

In both experiments, WEBANOMALY was evaluated on a data set consisting of HTTP

traffic drawn from real-world web applications. This data was obtained from several

monitoring points at both commercial and academic sites. For each application, the

full contents of each HTTP connection observed over a period of several months were

recorded. The resulting flows were filtered using signature-based techniques to remove

known attacks, and then partitioned into distinct training and test sets. In total, the data

set contains 823 unique web applications, 36,392 unique resource paths, 16,671 unique

parameters, and 58,734,624 HTTP requests.

6.3.1 Effects of concept drift

In the first experiment, we demonstrate that concept drift as observed in real-world

web applications results in a significant negative impact on false positive rates. First,

WEBANOMALY was trained on an unmodified, filtered data set. Then, the detector

analyzed a test data set Q to obtain a baseline ROC curve.

After the baseline curve had been obtained, the test data set was processed to intro-

duce new behaviors corresponding to the effects of web application changes, such as

upgrades or source code refactoring, obtaining Qdrift. In this manner, the set of changes

in web application behavior was explicitly known. In particular, new session flows

were created by introducing requests for new resources and creating request sequences

for both new and known resources that had not previously been observed. Also, new
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Figure 6.7: True positives plotted against false positives measured on Q and Qdrift, with HTTP
response modeling enabled in (b).
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parameter sets were created by introducing new parameters to existing requests. Fi-

nally, the behavior of modeled features of parameter values was changed by mutating

observed values in client requests. In all cases, responses generated by the web appli-

cation were modified to reflect changes in client behavior. For instance, references to

new resources were inserted in documents generated by the web application, and both

links and forms contained in documents were updated to reflect new parameters.

WEBANOMALY – without the HTTP response modeling technique enabled – was then

run over Qdrift to determine the effects of concept drift upon detector accuracy. The

resulting ROC curves are shown in Figure 6.7a. The consequences of web application

change are clearly reflected in the increase in false positive rate for Qdrift versus that

for Q. Each new session flow and parameter manifests as an alert, since the detector

is unable to distinguish between anomalies due to malicious behavior and those due to

legitimate changes in the web application.

6.3.2 Change detection

The second experiment quantifies the improvement in the detection accuracy of WE-

BANOMALY in the presence of web application change. As before, the detector was

trained over an unmodified filtered data set, and the resulting profiles were evaluated

over both Q and Qdrift. In this experiment, however, the HTTP response modeling tech-

nique was enabled.

Figure 6.7b presents the results of analyzing HTTP responses on detection accuracy.

Since many changes in the behavior of the web application and its clients can be discov-
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Change type Anomalies False positives Reduction

Session flow 6,749 0 100.0%
New parameter 6,750 0 100.0%

Modified parameter 5,785 4,821 16.6%

Total 19,284 4,821 75.0%

Table 6.1: Reduction in the false positive rate due to HTTP response modeling for various types
of changes.

ered using our response modeling technique, the false positive rate for Qdrift is greatly

reduced over that shown in Figure 6.7a, and approaches that of Q, where no changes

have been introduced. The small observed increase in false positive rate can be at-

tributed to the effects of changes in parameter values. This occurs because a change

has been introduced into a parameter value submitted by a client to the web applica-

tion, and no indication of this change was detected on the preceding document returned

to the client.

Table 6.1 displays the individual contributions to the reduction of the false positive

rate due to the response modeling technique. Specifically, the total number of anoma-

lies caused by each type of change, the number of anomalies erroneously reported as

alerts, and the corresponding reduction in the false positive rate is shown. The results

displayed were generated from a run using the optimal operating point indicated by

the knee of the ROC curve in Figure 6.7b. For changes in session flows and param-

eters sets, the detector was able to identify an anomaly as being caused by a change

in web application behavior in all cases. This resulted in a large net decrease in the

false positive rate of the detector with response modeling enabled. The modification of

parameters is more problematic, though; as discussed in Section 6.2.3, it is not always
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apparent that a change has occurred when that change is limited to the type of behavior

a parameter’s value exhibits. We note, however, that drastic changes in the behavior of a

given parameter are uncommon in practice. Rather, it is more often the case that a new

parameter is introduced, and, therefore, this result should be considered a worst-case

evaluation.

From the overall improvement in false positive rates, we conclude that HTTP response

modeling is an effective technique for distinguishing between anomalies due to legit-

imate changes in web applications and those caused by malicious behavior. Further-

more, any anomaly detector that does not do so is prone to generating a large number

of false positives when changes do occur in the modeled application. Finally, as it has

been shown in Section 6.1, web applications exhibit significant long-term change in

practice, and, therefore, concept drift is a critical aspect of web application anomaly

detection that must be addressed.

6.4 Conclusions

In this chapter, we have identified the natural dynamicity of web applications as an

issue that must be addressed by modern learning-based web application anomaly de-

tectors. Otherwise, increases in the false positive rate of an anomaly detector will result

whenever the monitored web application is changed. We refer to this phenomenon as

web application concept drift.

We presented an empirical study of the degree of change exhibited by real-world web
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applications over an extended period of time, and found that substantial changes in-

deed occur. We then demonstrated the use of novel HTTP response modeling tech-

niques in WEBANOMALY to discriminate between legitimate changes and anomalous

behaviors in web applications. More precisely, responses are analyzed to detect legit-

imate changes in web application behavior in terms of the interfaces presented to web

clients. This information is then leveraged to update the corresponding request and ses-

sion models. Finally, we evaluated the effectiveness of our approach over an extensive

real-world data set of web application traffic. The results show that WEBANOMALY

enhanced with response modeling can effectively distinguish between anomalies and

legitimate changes, avoiding false alerts in the presence of concept drift.

As future work, we plan to investigate the potential benefits of modeling the behavior of

JavaScript code, which is becoming increasingly prevalent in modern web applications.

Also, additional, richer, and media-dependent response models must be studied to ac-

count for Rich Internet Applications, such as Adobe Flash and Microsoft Silverlight

applications.

175



W. ROBERTSON DETECTION AND PREVENTION OF WEB-BASED ATTACKS

Chapter 7

Static Enforcement of Web Application

Integrity

The main focus of this dissertation to this point has been on machine learning-based

techniques for performing anomaly detection of web-based attacks. In general, much

research has focused on lightweight, black-box methods for detecting and preventing

the exploitation of security vulnerabilities in web applications. This approach has many

benefits when applied to existing applications, where the cost of re-architecting a com-

plex application would be prohibitive, or the source code for an application is not avail-

able. Anomaly detection approaches in particular are attractive due to their black-box

approach, since they typically need no a priori knowledge of the structure or imple-

mentation of a web application in order to provide effective detection. The viability of

this approach for protecting web applications is evidenced by the proliferation of web

application firewalls (WAFs) that incorporate some form of anomaly-based detection
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techniques [11, 31, 15, 66, 106].

As mentioned in Chapter 1, there exist a number of other approaches to securing soft-

ware besides detection techniques. In particular, another significant focus of research

has been on applying various static and dynamic analyses to the source code of web

applications in order to identify and mitigate security vulnerabilities prior to deploy-

ment [46, 78, 54, 7, 14, 135]. These approaches have the advantage that developers

can continue to create web applications using traditional languages and development

frameworks, and periodically apply a vulnerability analysis tool to provide a level of

assurance that no security-relevant flaws are present. Analyzing web applications is

a complex task, however, as is the interpretation of the results of such security tools.

Additionally, several approaches require developers to specify security policies to be

enforced in a specialized language.

A more recent line of research has focused on providing client-side protection by en-

forcing security policies within the web browser [101, 50, 27]. These approaches show

promise in detecting and preventing client-side attacks against newer web applications

that aggregate content from multiple third parties, but the specification of policies to

enforce is generally left to the developer.

In this chapter, we propose a different, preventative approach to web application se-

curity, one that constitutes a radical departure from the anomaly detection system de-

scribed heretofore. We observe that cross-site scripting (XSS) and SQL injection vul-

nerabilities can be viewed as a failure on the part of the web application to enforce a

separation of the structure and the content of documents and database queries, and that

this is a result of treating documents and queries as untyped sequences of bytes. There-

177



W. ROBERTSON DETECTION AND PREVENTION OF WEB-BASED ATTACKS

fore, instead of protecting or analyzing existing web applications, we describe a frame-

work that strongly types both documents and database queries. The framework is then

responsible for automatically enforcing a separation between structure and content, as

opposed to the ad hoc sanitization checks that developers currently must implement.

Consequently, the integrity of documents and queries generated by web applications

developed using our framework are automatically protected, and thus, by construction,

such web applications are not vulnerable to server-side cross-site scripting and SQL

injection attacks.

To illustrate the problem at hand, consider that HTML or XHTML documents to be

presented to a client are typically constructed by concatenating strings. Without ad-

ditional type information, a web application framework has no means of determining

that the following operations could lead to the introduction of a cross-site scripting

vulnerability:

String result = "<div>" + userInput + "</div>";

The key intuition behind the framework presented in this chapter is that because both

documents and database queries are strongly typed in our framework, the framework

can distinguish between the structure (<div> and </div>) and the content (userInput)

of these critical objects, and enforce their integrity automatically. To accomplish this,

we leverage the advanced type system of Haskell, since it offers a natural means of

expressing the typing rules we wish to impose. In principle, however, a similar frame-

work could be implemented in any language with a strong type system that allows for

some form of multiple inheritance (e.g., Java or C#).
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In this chapter, we present the design of a strongly typed web application framework

that can be used to create new web applications that are secure by construction. This

framework automatically prevents the introduction of server-side cross-site scripting

and SQL injection vulnerabilities by strongly typing both web documents and database

queries. We then evaluate the design of the framework, demonstrating the coverage and

correctness of its sanitization functions, and conclude that web applications developed

under this framework are free from certain classes of vulnerabilities.1

7.1 Framework design

At a high level, the web application framework is composed of several familiar com-

ponents. A web server component processes HTTP requests from web clients and for-

wards these requests in an intermediate form to the application server based on one of

several configuration parameters (e.g., URL path prefix). These requests are directed to

one of the web applications hosted by the application server. The web application ex-

amines any parameters to the request, performs some processing during which queries

to a back-end database may be executed, and generates a document. Note that in the

following, the terms “document” or “web document” shall generically refer to any text

formatted according to the HTML or XHTML standards. This document is then re-

turned down the component stack to the web server, which sends the document as part

of an HTTP response to the web client that originated the request. A graphical depiction

of this architecture is given in Figure 7.1.

1An earlier version of this work appeared in [105].
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Figure 7.1: Architectural overview of the web application framework.

Web applications developed for our framework are structured as a set of functions with

access to a combination of configuration data and application state. More precisely, web

applications execute inside the App monad. Monads are a category theoretic construc-

tion that have found wide application in Haskell to sequence computations or isolate

code that can produce side effects.2 For the purposes of our framework, we use the

App monad to thread implicit state through the functions comprising a web application.

This monad is also used to provide a controlled interface to potentially dangerous func-

tions, effectively sandboxing applications under the framework. In particular, the App

monad itself is structured as a stack of monad transformers that provide a functional

interface to a read-only configuration type AppConfig, a read-write application state

type AppState, and filtered access to the IO monad. The definitions for AppConfig

and AppState are given in Figures 7.2 and 7.3.

The AppConfig type holds static information relating to the configuration of the ap-

plication, including the port on which to listen for HTTP requests and the root di-

rectory of static files to serve from the filesystem. Of particular interest, however,

are the RouteMap and StmtMap types. The RouteMap type describes how URL paths

are mapped to values of type DocumentGen, which are simply functions that generate

2For further information on monads, please refer to [87, 128].
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data AppConfig = AppConfig {
appCfgPort :: Int,
appCfgPrefix :: String,
appCfgRoutes :: RouteMap,
appCfgFileRoot :: FilePath,
appCfgDBConn :: Connection,
appCfgDBStmts :: StmtMap

}

Figure 7.2: Definition for the AppConfig type.

documents within the App monad. In addition, the RouteMap type contains a default

DocumentGen type that specifies an error page. Given an incoming HTTP request des-

tined for a particular web application, the application server uses that application’s

RouteMap type to determine the proper function to call in order to generate the docu-

ment to be returned to the client.3 Finally, the StmtMap type associates unique database

query identifiers to prepared statements that can be executed by a document generator.

data AppState = AppState {
appStClient :: Maybe SockAddr,
appStUrl :: Maybe Url

}

Figure 7.3: Definition for the AppState type.

The AppState type contains mutable state that is specific to each request for a docu-

ment. In particular, one field records information indicating the source of the request.

Additionally, another field records the URL that was requested, including any param-

eters that were specified by the client. More complex state types that hold additional

information (e.g., cached database queries or documents) are possible, however.

3This construction is similar to the “routes” packages present in popular web development frame-
works such as Rails [40] and Pylons [9].
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7.2 Document structure

In this section, we introduce the means by which documents are specified under the

framework. Then, we discuss how these specifications allow the framework to auto-

matically contain the potentially harmful effects of dynamic data.

7.2.1 Document specification

Once an appropriate route from the RouteMap structure has been selected by the appli-

cation server, the associated document generator function is executed within the context

of the App monad (i.e., with access to the configuration and current state of the appli-

cation). The document generator function processes the request from the application

server and returns a variable of type Document. The definition of the Document type

and its constituent types are shown in Figure 7.4.

As a result, documents in our framework are not represented as an unstructured stream

of bytes. Rather, the structure of the Document type closely mirrors that of parsed

HTML or XHTML documents. The DocumentType field indicates the document’s

type, such as “HTML 4.01 Transitional” or “XHTML 1.1”. The DocumentHead type

contains information such as the title and client-side code to execute. Finally, the

DocumentBody type contains a single field that represents the root of a tree of nodes

that represent the body of the document.

Each node in this tree is an instantiation of the Node type. Each Node instantiation

maps to a distinct (X)HTML element, and records the set of possible properties of
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data Document Document {
docType :: DocumentType,
docHead :: DocumentHead,
docBody :: DocumentBody

}

data DocumentType = DOC TYPE HTML 4 01 STRICT
| DOC TYPE HTML 4 01 TRANS
| ...
| DOC TYPE XHTML 1 1

data DocumentHead = DocumentHead {
docTitle :: String,
docLinks :: [Node],
docScripts :: [Node],
docBaseUrl :: Maybe Url,
docBaseTarget :: Maybe Target,
docProfile :: [Url]

}

data DocumentBody = DocumentBody {
docBodyNode :: Node

}

Figure 7.4: Definition for the Document type.

that element. For instance, the TextNode data constructor creates a Node that holds a

text string to be displayed as part of a document. The AnchorNode data constructor,

on the other hand, creates a Node that holds information such as the href attribute,

rel attribute, and a list of child nodes corresponding to the text or other elements that

comprise the “body” of the link. A partial definition of the Node type is presented in

Figure 7.5.

With this construction, the entire document produced by a web application in our frame-

work is strongly typed. Instead of generating a document as a byte stream, document
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data Node = TextNode {
nodeText :: String

} | AnchorNode {
anchorAttrs :: NodeAttrs,
anchorHref :: Maybe Url,
anchorRel :: Maybe Relationship,
anchorRev :: Maybe Relationship,
anchorTarget :: Maybe Target,
anchorType :: Maybe MimeType,
anchorCharset :: Maybe CharSet,
anchorLang :: Maybe Language,
anchorName :: Maybe AttrValue,
anchorShape :: Maybe Shape,
anchorCoords :: Maybe Coordinates,
anchorNodes :: [Node]

} | DivNode {
divAttrs :: NodeAttrs,
divNodes :: [Node]

} ...

Figure 7.5: Sample Node definitions.

structure is explicitly encoded as a tree of nodes. Furthermore, each element and ele-

ment attribute has an associated type that constrains, to one degree or another, the range

of possible values that can be represented. For instance, the MimeType, CharSet, and

Language types are examples of enumerations that strictly limit the set of possible val-

ues the attribute can take to legal values. Standard (X)HTML element attributes (e.g.,

id, class, style) are represented with the NodeAttr type. Optional attributes are

represented using either the Maybe type,4 or as an empty list if multiple elements are

allowed.

Note that it is possible for a Document to represent an (X)HTML document that is not

4Maybe allows for the absence of a value, as Haskell does not possess nullable types. For example,
the type Maybe a can be either Just "..." or Nothing.
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necessarily consistent with the respective W3C grammars that specify the set of well-

formed documents. One example is that any Node instantiation may appear as the child

of any other Node that can hold children, which violates the official grammars in several

instances. Strict conformance with the W3C standards is not, however, our goal.5

Instead, the typing scheme presented here allows our framework to specify a separation

between the structure and the content of the documents a web application generates.

More precisely, the dynamic data that enters a web application as part of an HTTP

request (e.g., as a GET or POST parameter) can indirectly influence the structure of a

document. For instance, a search request to a web application may result in a variable

number of table rows in the generated document depending on the number of results

returned from a database query. Due to our framework, however, client-supplied data

cannot directly modify the structure of the document in such a way that a code injection

can occur.

7.2.2 Enforcing document integrity

Once a Document has been constructed by the web application in response to a client

request, it is returned to the application server. The application server is responsible for

converting this data structure into a format the client can understand – that is, it must

render the document into a stream of bytes representing an (X)HTML document. Con-

sequently, the set of types that can comprise a Document are instances of the Render

5Indeed, standards-conforming documents have been shown to be difficult to represent in a functional
language [26].
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class Render a where
render :: a -> String

instance Render AttrValue where
render = quoteAttr

quoteAttr :: AttrValue -> String
quoteAttr a = foldl’ step [] (attrValue a)

step acc c | c == ’<’ = acc ++ "&lt;"
| c == ’>’ = acc ++ "&gt;"
| c == ’&’ = acc ++ "&amp;"
| c == ’"’ = acc ++ "&quot;"
| otherwise = acc ++ [c]

Figure 7.6: Render typeclass definition and simplified instance example. Here, quoteAttr
performs a left fold over attribute values using foldl’, which applies the step
function to each character of the string and accumulates the result. The definition
of step specifies a number of guards, where | c == ’<’ is a condition that must
be satisfied for the statement acc ++ "&lt;" to execute. This statement simply
appends the string "&lt;" to acc, the accumulator, in order to build a new, san-
itized string. If no guard condition is satisfied, the character is appended without
conversion.

typeclass, shown in Figure 7.6.6

The Render type class specifies that any instance of the class must implement the

render function. From the type signature, the semantics of the function are clear:

render converts an instance type into a string representation suitable for presentation

to a client. For our purposes, the Render type class is also responsible for enforcing

the integrity of a document’s structure.

As an example, Figure 7.6 presents a simplified render definition for the AttrValue

type that is used to indicate element attribute strings that may assume (almost) arbitrary

6Haskell typeclasses are roughly similar to Java interfaces, in that they specify a function interface
that all instances (in Java, implementors) must provide.
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values. In order to preserve the integrity of the document, an attribute value must not

contain certain characters that would allow an attacker to inject malicious code into the

document. Consider, for instance, the following element:

<input type="hidden" name="h1" value="..."/>

Now, suppose an attacker submitted the following string as part of a request such that

it was reflected to another client as the value of the hidden input field:

"/>

<script src="http://example.com/malware.js">

</script>

<span id="

The result would be the following:

<input type="hidden" name="h1" value=""/>

<script src="http://example.com/malware.js">

</script>

<span id=""/>

To prevent such an injection from occurring, the render function for the AttrValue

class applies a sanitization function on the string wrapped by AttrValue. Any occur-

rence of an unsafe character is replaced by an equivalent HTML entity encoding that
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can safely appear as part of an attribute value.7 Similar render functions are defined

for the set of types that can comprise a Document.

Therefore, to prepare a Document as part of an HTTP response to a client, the applica-

tion server applies the render function to the document, which recursively converts the

data structure into an (X)HTML document. As part of this process, the content of the

document is sanitized by type-specific render functions, ensuring that client-supplied

input to the web application cannot modify the document structure in such a way as to

result in a client-side code injection.

7.3 SQL query structure

Similar to the case of documents, SQL queries are given structure in our framework

through the application of strong typing rules that control how the structure of the query

can be combined with dynamic data. In this section, we examine the structure of SQL

queries and discuss two mechanisms by which SQL query integrity is enforced under

the framework.

7.3.1 Query specification

SQL queries, as shown in Figure 7.7, are composed of clauses, predicates, and expres-

sions. For instance, a clause might be SELECT * or UPDATE users. An example of

7In the real implementation, the sanitization function is somewhat more complex, as there are multiple
encodings by which an unsafe character can be injected. The example function given here is simplified
for the purposes of presentation.
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INSERT INTO users(login, passwd) VALUES(?, ?)
SELECT * FROM users WHERE login=’admin’ AND passwd=’test’
UPDATE users SET passwd=’$passwd’ WHERE login=’$login’

Figure 7.7: Examples of SQL queries.

a predicate is login=’admin’, where ’admin’ is an expression. Clauses, predicates,

and expressions are themselves composed of static tokens, such as keywords (SELECT)

and operators (=), and dynamic tokens, such as table identifiers (users) or data values

(’admin’).

Typically, the structure of a SQL query is fixed.8 Specifically, a query will have a static

keyword denoting the operation to perform, will reference a static set of tables and

fields, and specify a fixed set of predicates. Generally, the only components of a query

that change from one execution to the next are data values, and, even then, their number

and placement remain fixed.

SQL injection attacks rely upon the ability of the attacker to modify the structure of

a query in order to perform a malicious action. When SQL queries are constructed

using string operations without sufficient sanitization applied to user input, such attacks

become trivial. For instance, consider the UPDATE query shown in Figure 7.7. If an

attacker were to supply the value “quux’ OR login=’admin” for the $login variable,

the following query would result:

UPDATE users SET passwd=’foo’ WHERE login=’quux’ OR login=’admin’

8This is not always the case, but the case of dynamic query structure will be considered later in this
section.
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SELECT * FROM users WHERE login=? AND passwd=?
UPDATE users SET passwd=? WHERE login=?

Figure 7.8: Examples of prepared statements, where “?” characters serve as placeholders for
data substitution.

Because the attacker was able to inject single quotes, which serve as delimiters for data

values, the structure of the query was changed, resulting in a privilege escalation attack.

7.3.2 Integrity enforcement with static query structure

In contrast to the case of document integrity enforcement, a well-known solution exists

for specifying SQL query structure: prepared statements. Prepared statements are a

form of database query consisting of a parameterized query template containing place-

holders where dynamic data should be substituted. An example is shown in Figure 7.8,

where the placeholders are signified by the “?” character.

A prepared statement is typically parsed and constructed prior to execution, and stored

until needed. When an actual query is to be issued, variables that may contain client-

supplied data are bound to the statement. Since the query has already been parsed

and the placeholders specified, the structure of the query cannot be modified by the

traditional means of providing malicious input designed to be interpreted as part of the

query. In the case of the injection attack described previously, the result would be the

following (note that the injected single quotes have been escaped):

UPDATE users SET passwd=’foo’ WHERE login=’quux’’ OR login=’’admin’
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From our perspective, the query has been typed as a composition of static and dynamic

elements; it is exactly this distinction between structure and content that we wish to

enforce. Haskell’s database library (HDBC) supports the use of prepared statements,

as do most other database libraries. Therefore, the framework exports functions that

allow a web application to associate prepared statements with a unique identifier in the

AppConfig type. During request processing, a document generator can then retrieve a

prepared statement using the identifier, bind values to it, and execute queries that are

not vulnerable to injection attacks.

One detail remains, however. The HDBC library also provides functions that allow

traditional ad hoc queries that are assembled as concatenations of strings to be exe-

cuted. Without any other modification to the framework, a web application developer

would be free to directly call these functions and bypass the protections afforded by the

framework. Therefore, an additional component is required to encapsulate the HDBC

interface and prevent execution of these unsafe functions. This component takes the

form of a monad transformer AppIO, which simply wraps the IO monad and exposes

only those functions that are considered safe to execute. The structure of this stack

is shown in Figure 7.9. In this environment, within which all web applications using

the framework operate, unsafe database execution functions are inaccessible, since they

will fail to type-check. Thus, assuming the correctness of the HDBC prepared state-

ment interface, web applications developed using the framework are not vulnerable to

SQL injection.
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Figure 7.9: Graphical representation of the App monad stack within which framework applica-
tions execute. The AppIO monad encapsulates applications, preventing them from
calling unsafe functions within the IO monad.

7.3.3 Integrity enforcement with dynamic query structure

Though most SQL queries possess a fixed structure, there does exist a small class of

SQL queries that exhibit dynamic structure. For instance, many SQL database imple-

mentations provide a set membership operator, where queries of the form

SELECT * FROM users WHERE login IN (’admin’, ’developer’, ’tester’)

can be expressed. In this case, the size of the set of data values can often change at

runtime. Another example is the case where the structure of queries is determined by

the user, for instance through a custom search form where many different combinations

of predicates can be dynamically expressed. Unfortunately, since these queries cannot

be represented using prepared statements, they cannot be protected using the monadic

encapsulation technique described previously.
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Therefore, a second database interface is exposed by the framework to the application

developers. Instead of relying upon prepared statements, this interface allows devel-

opers to dynamically construct queries as a tree of algebraic data types as in the case

of web documents. Figure 7.10 shows an example of the type representing a SELECT

query.

To populate instances of these types, the interface provides a set of combinators, or

higher-order functions, that can be chained together. These combinators, which assume

names similar to SQL keywords, implement an embedded domain-specific language

(DSL) that allows application developers to naturally specify dynamic queries within

the framework. For instance, a query could be constructed using the following sequence

of function invocations:

qSelect [qField "*"] >>=

qFrom [qTable "users"] >>=

qWhere (((qField "login") == (qData "admin")) &&

((qField "passwd") == (qData "test")))

Similar to the case of the Document type, queries constructed in this manner are trans-

formed into raw SQL statements solely by the framework.9 Therefore, the types that

represent queries also implement the Render typeclass. Consequently, sanitization

functions must be applied to each of the fields comprising the query types, such that

the intended structure of the query cannot be modified. This can be accomplished by

enforcing the conditions that no data value may contain an unescaped single quote,
9Note that, as in the case for web documents, we do not attempt to enforce the generation of correct

SQL, but rather focus on preventing attacks by preserving query structures specified by the developer.
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data Select = Select {
sFields :: [Expr],
sTables :: [Expr],
sCons :: Maybe Expr,
sGrpFields :: [Expr],
sGrpCons :: Maybe Expr,
sOrdFields :: [Expr],
sLimit :: Maybe Int,
sOffset :: Maybe Int,
sDistinct :: Bool

}

data Expr = EXPR TABLE Table
| EXPR FIELD Field
| EXPR DATA String
| EXPR NOT Expr
| EXPR OR Expr Expr
| EXPR AND Expr Expr
| ...

data Table = Table {
tName :: String,
tAlias :: Maybe String

}

data Field = Field {
fName :: String,
fAlias :: Maybe String

}

Figure 7.10: Definition for the Select type.
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and that all remaining query components may not contain spaces, single quotes, or

characters signifying the beginning of a comment. Assuming that these sanitization

functions are correct, this construction renders applications developed under the frame-

work invulnerable to SQL injection attacks while allowing for more powerful query

specifications.

7.4 Evaluation

To demonstrate that web applications developed using our framework are secure by

construction from server-side XSS and SQL injection vulnerabilities, we conducted an

evaluation of the system. First, we demonstrate that all dynamic content contained in

a Document must be sanitized by an application of the render function, and that a

similar condition holds for dynamically-generated SQL queries. Then, we provide evi-

dence that the sanitization functions themselves are correct – that is, they successfully

strip or encode unsafe characters. We also verify that the prepared statement library

prevents injections, as expected. Finally, to demonstrate the viability of the framework,

an experiment to evaluate the performance of a web application developed using the

framework is conducted.

7.4.1 Sanitization function coverage

The goal of the first experiment was to justify the claim that all dynamic content con-

tained in a Document or query type must be sanitized prior to presentation to the client
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that originated the request. To accomplish this, a static control flow analysis of the

framework was performed. Figure 7.11 presents a control flow graph of the application

server in a simplified form, where function calls are sequenced from left to right. Of

particular interest is the renderDoc function, which retrieves the appropriate document

generator given a URL path, executes it in the call to route, sanitizes it by applying

render, and creates an HTTP response by calling make200. The sanitized document is

then returned to procRequest, which writes it to the client. Therefore, the entire pro-

cess of converting the document to a byte stream for presentation to the client is solely

due to the recursive render application. Similarly, because the only interface exposed

to applications to execute SQL queries are execStmt and execPrepStmt from within

the App monad, queries issued by applications under the framework must be sanitized

either by the framework or the HDBC prepared statement functions.

Figure 7.12 displays a subset of the full control flow graph depicting an instance of

the render function for the AnchorNode Node instantiation. For clarity of presenta-

tion, multiple calls to render and maybeRenderAttr have been collapsed into single

nodes. Recall from Figure 7.5 that the definition of AnchorNode does not contain

any bare strings; instead, each field of the type is either itself a composite type, or an

enumeration for which a custom render function is defined. Since no other string con-

version function is applied in this subgraph, we conclude that all data contained in an

AnchorNode variable must be filtered through a sanitization function.

The analysis of this single case generalizes to the set of all types that can comprise a

Document or query type. In total, 163 distinct sanitization function definitions were

checked to sanitize the contexts shown in Table 7.1. For each function, our analysis
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serveApp

appCfgPort socket bindSocket listen newMVar procConns

accept forkIO procRequest

socketToHandle hSetBuffering hGetContents handleRequest hPutStr hClose

runRequestParse renderDoc

reqUrl put getRoute urlPath appCfgRoutes route render make200

execStmt execPrepStmt

Figure 7.11: Simplified control flow graph for application server.

render

renderNode

concatMap maybeRenderAttr

quoteAttr

Figure 7.12: Example control flow graph for Render Node instance.

found that no irreducible type was concatenated to the document byte stream without

first being sanitized.

7.4.2 Sanitization function correctness

The goal of this experiment is to determine whether the sanitization functions employed

by the framework are correct (i.e., whether all known sequences of dangerous char-

acters are stripped or encoded). To establish this, we applied a dynamic test-driven
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Context Semantics

Document nodes Conversion to static string
Document node attributes Encoding of HTML entities

Document text Encoding of HTML entities
URL components Encoding of HTML entities, percent encoding
SQL static values Removal of spaces, comments, quotes
SQL data values Escaping of quotes

Table 7.1: Example contexts for which specific sanitization functions are applied, and the se-
mantics of those sanitization functions under various encodings.

approach using the QuickCheck property testing library [16]. QuickCheck allows a de-

veloper to use an embedded language to specify invariants that should hold for a given

set of functions. The library then automatically generates a set of random test cases,

and checks that the invariants hold for each test. In our case, we selected invariants

based upon known examples of XSS [103] and SQL injection attacks [32]. In addition,

we introduced modifications of the invariants that account for different popular docu-

ment encodings, since these encodings directly affect how browser parsers interpret the

sequences of bytes that comprise a document.

Since the coverage of the sanitization functions has been established by the control

flow analysis, we focused our invariant testing on the low-level functions responsible

for processing string data. In particular, we specified invariants for 7 functions that

are responsible for sanitizing (X)HTML content, element attributes, and various URL

components.10 An example invariant specification is shown in Figure 7.13.

For each of the sanitization functions, we first tested the correctness of the invariants by

checking that they were violated over a set of 100 strings corresponding to real-world

10The 163 functions noted above eventually apply one of these 7 context-specific sanitization functions
for web documents.
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propAttrValueSafe :: AttrValue -> Bool
propAttrValueSafe input =

(not $ elem ’<’ output) &&
(not $ elem ’>’ output) &&
(not $ elem ’&’ $ stripEntities output) &&
(not $ elem ’"’ output) where
output = render input

Figure 7.13: Simplified sanitization function invariant specification. Here,
propAttrValueSafe is a conjunction of predicates, where
not $ elem c output specifies that the character c should not be an ele-
ment of the output of render in this context. Since “&” is used to indicate the
beginning of an HTML entity (e.g., &amp;), the stripEntities function ensures
that ampersands may only appear in this form.

cross-site scripting, command injection, and other code injection attacks. Then, for

each sanitization function, we generated 1,000,000 test cases of random strings using

the QuickCheck library. In all cases, the invariants were satisfied.

In addition to performing invariant testing on the set of document sanitization functions,

we also applied a similar testing process to the sanitization of query types described in

Section 7.3.3. Finally, we applied manual invariant testing on the HDBC prepared

statement interface. In all cases, the invariants on the integrity of the queries and the

database itself held.

7.4.3 Framework performance

In this experiment, we compared the performance of a web application developed using

our framework to similar applications implemented using other frameworks. In partic-

ular, we developed a small e-commerce site with a product display page, cart display
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Figure 7.14: Latency and throughput performance for the Haskell, Pylons, and Tomcat-based
web applications.
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page, and checkout page under our framework, using the Pylons framework 0.9.7 [9],

and as a Java servlet using Tomcat 6.0.18.11 Each application was backed by a SQLite

database containing product information. The application servers were hosted on a

server running Ubuntu Server 8.10 with dual Intel Core 2 Duo CPUs, 2 GB of RAM,

and 1000BaseT Ethernet network interfaces. The httperf [43] web server benchmark-

ing tool was deployed on a similar server to generate load for each application.

Figure 7.14 presents averaged latency and throughput plots for 8 benchmarking runs

for each framework tested. In each run, the number of concurrent clients issuing re-

quests was varied, and the average response latency in milliseconds and the aggregate

throughput in kilobytes was recorded. In this experiment, our framework performed

competitively compared to Pylons and Tomcat, performing somewhat better than Py-

lons in both latency and throughput scaling, and vice versa for Tomcat. In particular,

the latency plot shows that our framework scales significantly better with the number

of clients than the Pylons framework. Unfortunately, our framework exhibited approx-

imately a factor of two increase in latency compared to the Tomcat application. Cost-

center profiling revealed that this is mainly due to the overhead of list-based String

operations in Haskell,12 though this could be ameliorated by rewriting the framework

to prefer the lower-overhead ByteString type. Therefore, it is not unreasonable to

assume that web applications developed using our framework would exhibit acceptable

performance behavior in the real world.

11Pylons is a Python-based framework that is similar in design to Ruby on Rails, and is used to
implement a variety of well-known web applications (e.g., Reddit (http://reddit.com/)).

12Strings are represented as lists of characters in Haskell – that is, type String = [Char].
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7.4.4 Discussion

The security properties enforced by this framework are effective at guaranteeing that

applications are not vulnerable to server-side XSS and SQL injection. There are lim-

itations to this protection that need to be highlighted, however, and we discuss these

here.

First, web applications can, in some cases, be vulnerable to client-side XSS injections,

or DOM-based XSS, where the web application can potentially not receive any portion

of such an attack [60]. This can occur when a client-side script dynamically updates

the DOM after the document has been rendered by the browser with data controlled by

an attacker. In general, XSS attacks stemming from the misbehavior of client-side code

within the browser are not addressed by the framework in its current form.

Recently, a new type of XSS attack against the content-sniffing algorithms employed

by web browsers has been demonstrated [10]. In this attack, malicious non-HTML

files that nevertheless contain HTML fragments and client-side code are uploaded to a

vulnerable web application. When such a file is downloaded by a victim, the content-

sniffing algorithm employed by the victim’s browser can potentially interpret the file

as HTML, executing the client-side code contained therein, resulting in a XSS attack.

Consequently, our framework implements the set of file upload filters recommended

by the authors of [10] to prevent content-sniffing XSS. Since, however, the documents

are supplied by users and not generated by the framework itself, the framework cannot

guarantee that it is immune to such attacks.

Finally, CSS stylesheets and JSON documents can also serve as vectors for XSS at-
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tacks. In principle, these documents could be specified within the framework using the

same techniques applied to (X)HTML documents, along with context-specific sanitiza-

tion functions. In the case of CSS stylesheets that are uploaded to a web application

by users, additional sanitization functions could be applied to strip client-side code

fragments. However, the framework in its current form does not address these vectors.

7.5 Conclusions

In this chapter, we have presented a framework for developing web applications that,

by construction, are invulnerable to server-side cross-site scripting and SQL injection

attacks. The framework accomplishes this by strongly typing both documents and

database queries that are generated by a web application, thereby automatically en-

forcing a separation between structure and content that preserves the integrity of these

objects.

We conducted an evaluation of the framework, and demonstrated that all dynamic data

that is contained in a document generated by a web application must be subjected to

sanitization. Similarly, we showed that all SQL queries are executed in a safe manner.

We also demonstrated the correctness of the sanitization functions themselves. Finally,

we gave performance numbers for representative web applications developed using this

framework that compare favorably to those developed in other popular environments.

In future work, we plan to investigate how the framework can be modified to allow

developers to specify “safe” transformations of document structure that occur in a con-
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trolled manner. Specifically, this would allow for dynamic changes to document struc-

tures to occur in response to user data that are not vulnerable to XSS injections. Also,

we plan to investigate static techniques for verifying the correctness of the sanitization

functions in terms of their agreement with invariants extracted from web browser doc-

ument parsers and database query parsers, for instance using a combination of static

and dynamic analyses [8, 10]. Finally, future work will consider how language-based

techniques for ensuring document integrity could be applied on the client.
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Chapter 8

Conclusions

The number and severity of security incidents on the World Wide Web are both in-

creasing, and methods to mitigate the pervasive vulnerabilities present in the Web is

an active area of research. Anomaly detection techniques are a promising avenue for

both providing advanced monitoring capabilities as well as offering the ability to block

web attacks. Unfortunately, existing anomaly detection approaches suffer from several

significant drawbacks. This dissertation has outlined the design of WEBANOMALY, a

next-generation web application anomaly detection system that is intended to address

these deficiencies.

To accomplish this, a number of novel contributions to the area of web application

anomaly detection have been presented. In particular, new models for characterizing

normal sequences of web client queries and the structure of documents generated by

web applications have been discussed. The use of anomaly signatures to reduce false
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positive rates and provide attack classification were introduced. An approach to ad-

dressing a scarcity of training data in the context of web applications by leveraging

global similarities between application features was presented. Finally, we propose a

technique to adapt to concept drift, or changes in the behavior of web application fea-

tures over time, by treating the web application as an oracle of change. Each of these

techniques were introduced as components of WEBANOMALY, and shown to dramati-

cally increase the detection accuracy of the system as well as reduce its false positive

rate.

Though many obstacles to the effective use of anomaly detection techniques for web-

based attacks have been surmounted, several challenges remain. In particular, the in-

creasing prevalence of client-side code, such as JavaScript and Rich Internet Frame-

works, increases the attack surface of web applications and introduces a new set of

potential vulnerabilities. These must be addressed by anomaly detection systems in

order to provide acceptable coverage of monitored web applications.

Anomaly detection techniques are a lightweight and effective solution for protecting

existing applications. New web applications, however, offer an opportunity to secure

those applications against known attacks from the design phase. To that end, this disser-

tation has also presented a framework for developing web applications that are secure

against cross-site scripting (XSS) and SQL injection attacks by construction. This is

accomplished by strongly typing both documents and database queries issued by the

web application, allowing for the framework to automatically enforce a separation be-

tween structure and content. The resulting framework, implemented in Haskell, was

evaluated to verify the correctness and coverage of its santization functions. In addi-
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tion, an evaluation was conducted of its performance relative to existing web applica-

tion development frameworks, and the Haskell-based framework was found to compare

favorably.

Though XSS and SQL injection are by far the most serious web application vulnerabili-

ties today, numerous other types of attacks abound that are not addressed by this frame-

work. Future work will focus on automatic mitigation of these attacks. Also, while

adoption of Haskell and other functional languages continues to grow, it is foresee-

able that many applications will continue to be developed using imperative languages.

Therefore, future work will examine how the techniques that have been proposed in this

dissertation may be applied in an imperative context.
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